Nav: Home

Scientists find holes in light by tying it in knots

August 01, 2018

A research collaboration including theoretical physicists from the University of Bristol and Birmingham has found a new way of evaluating how light flows through space - by tying knots in it.

Laser light may appear to be a single, tightly focused beam. In fact, it's an electromagnetic field, vibrating in an ellipse shape at each point in space. This multidirectional light is said to be 'polarised'.

The effect can be seen with polarised sunglasses, which only allow one direction of light to penetrate. By holding them up to the sky and rotating them, viewers will see darker and brighter patches as light flowing in different directions appears and disappears.

Now, scientists have been able to use holographic technology to twist a polarised laser beam into knots.

Professor Mark Dennis, from the University of Bristol's School of Physics and University of Birmingham's School of Physics and Astronomy, led the theoretical part of the research.

He said: "We are all familiar with tying knots in tangible substances such as shoelaces or ribbon. A branch of mathematics called 'knot theory' can be used to analyse such knots by counting their loops and crossings.

"With light, however, things get a little more complex. It isn't just a single thread-like beam being knotted, but the whole of the space or 'field' in which it moves.

"From a maths point of view, it isn't the knot that's interesting, it's the space around it. The geometric and spatial properties of the field are known as its topology."

In order to analyse the topology of knotted light fields, researchers from universities in Bristol, Birmingham, Ottowa and Rochester used polarised light beams to create structures known as 'polarisation singularities'.

Discovered by Professor John Nye in Bristol over 35 years ago, polarisation singularities occur at points where the polarisation ellipse is circular, with other polarisations wrapping around them. In 3 dimensions, these singularities occur along lines, in this case creating knots.

The team were able to create knots of much greater complexity than previously possible in light and analysed them in fine detail.

Professor Dennis added: "One of the purposes of topology is to talk about showing data in terms of lines and surfaces. The real-world surfaces have a lot more holes than the maths predicted."
-end-
The work, which was funded by a Leverhulme Trust Research Project Grant, is an important step forward in the study of optics and polarisation, and, say researchers, could lead to the creation of new devices which process information through customised complex light structures.

University of Bristol

Related Research Articles:


Related Research Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...