Nav: Home

Study finds blind people depend on timing cues for some spatial awareness

August 01, 2018

It's a popular idea in books and movies that blind people develop super sensitive hearing to help navigate the world around them. But a study, published August 1 in the journal iScience, shows that, in at least one situation, blind people have more trouble discerning the location of sounds than do people who can see.

Researchers in Italy found blind people needed additional timing cues to accurately judge the relative location of sounds played from a line of speakers. However, people who aren't visually impaired (but were blindfolded for the study) could judge the relative location of sounds independently from timing cues.

"This work teaches us that our audio-space representation is mediated by our visual experience," says first author Monica Gori of the Istituto Italiano di Tecnologia. "In absence of vision, auditory spatial skills are not always enhanced - and in some cases, such as in the space bisection task studied here, these can be impaired."

Gori and colleagues recruited 17 blind people and 17 age-matched sighted people for the study. All participants were blindfolded before entering a room and sat before a horizontal line of 23 speakers. From left to right, three of the speakers played a beep and participants were asked to judge whether the second beep originated from a speaker closer to the first beep or the third beep.

The exercise resembles a situation in which a blind person is seated opposite three people along a large table and wants to figure out where people are sitting by listening to them speak.

In the first round of the experiment, a uniform time delay of 750 milliseconds followed each beep before another beep was played. In the next two rounds, delays between the beeps were timed to be either directly proportional to the distance between the speakers playing the beeps or indirectly proportional. The study participants didn't know the timing of the beeps was manipulated in this way. While the beeps always moved from left to right along the line of speakers, an algorithm randomly selected which three speakers would play the beeps. Researchers also performed a control experiment in which participants were not asked about location, but whether the second beep played closer in time to the first or last beep.

Sighted people in the study could generally judge the relative position of the beeps no matter how the beeps were timed (and despite being blindfolded). However, timing greatly influenced the judgement of the blind participants.

Blind participants could most accurately judge the position of the beeps when the delay between beeps was proportional to the physical distance between the speakers. But blind individuals had more trouble judging the position when there was a uniform delay between the beeps. And when the time delay was mismatched and inversely proportional to the beeps, blind participants were more likely to mismatch the location of the beeps. For example, blind participants assumed a longer delay between beeps was associated with a longer distance between beep locations, even when the reverse was true.

"This result suggests that blind individuals assume a constant velocity of objects in space and use the temporal cue to infer a sense of space," says Gori.

Gori and her colleagues have preliminary data showing that young children use timing cues to judge spatial distance between sounds. This may mean that the brain uses cross-sensory interactions during development to build spatial representations.

"I would like to study how this spatial and temporal interaction emerges in blind children and to study the brain mechanisms associated with this," says Gori.
This study was supported by the weDRAW EU project.

iScience, Gori et al.: "Time attracts space for visually impaired individuals."

iScience (@iScience_CP) is a new open-access, interdisciplinary journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. Visit: To receive Cell Press media alerts, contact

Cell Press

Related Blindfolded Articles:

Study finds blind people depend on timing cues for some spatial awareness
It's a popular idea in books and movies that blind people develop super sensitive hearing to help navigate the world around them.
Marine animals can hear us swim, kayak and scuba dive
While it is obvious that things like boats can be heard by marine life under the water, what about human activities like swimming, canoeing and scuba diving?
Can we imitate organisms' abilities to decode water patterns for new technologies?
The shape of water. Can it tell us about what drives romance?
Feelings determine from which side we embrace each other
In emotionally charged situations, we tend to hug each other from the left side more often than in neutral contexts.
Gentle touch soothes the pain of social rejection
The gentle touch of another individual soothes the effects of social exclusion, one of the most emotionally painful human experiences, according to new UCL research.
How vision shapes touch
A neuroimaging study published in JNeurosci reveals the neural network responsible for attributing the sense of touch to a location in space develops and operates differently in individuals blind from birth compared to sighted individuals.
Tactile feedback adds 'muscle sense' to prosthetic hand
Engineers from Rice University and the Research Center 'E.Piaggio' of the University of Pisa and the Italian Institute of Technology have found that tactile feedback on the skin allowed blindfolded test subjects to more than double their ability to discern the size of objects grasped with a prosthetic hand.
Seeing the quantum future... literally
Sydney scientists have demonstrated the ability to 'see' the future of quantum systems and used that knowledge to preempt their demise, in a major achievement that could help bring the strange and powerful world of quantum technology closer to reality.
Cancer registries in resource-constrained countries can inform policy
Data from population-based cancer registries are vital for informing health programs, policies and strategies for cancer screening and treatment.
Cancer registries in resource-constrained countries can inform policy to reduce cancer burden
Data from population-based cancer registries are vital for informing health programs, policies and strategies for cancer screening and treatment.

Related Blindfolded Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...