Nav: Home

Large supercrystals promise superior sensors

August 01, 2018

ALBUQUERQUE, N.M. -- Using an artful combination of nanotechnology and basic chemistry, Sandia National Laboratories researchers have encouraged gold nanoparticles to self-assemble into unusually large supercrystals that could significantly improve the detection sensitivity for chemicals in explosives or drugs.

"Our supercrystals have more sensing capability than regular spectroscopy instruments currently in use, just like a dog's nose has more sensing capabilities than a human's," said lead Sandia researcher Hongyou Fan.

Other researchers previously reported forming gold supercrystals but only in the micron range, too small for commercial production, said Fan, whose submillimeter supercrystals are easily manipulated with industrial tools of the macroworld.

The benchtop sensors, recently reported in Nature Communications, also are surprisingly inexpensive, Fan says. "The supercrystals are built of gold, but only a little of it." It takes 0.012 grams of gold to form a sensor, for a total materials cost of roughly 50 cents.

To form each of the Sandia supercrystals, millions of gold nanoparticles tightly self-assemble in orderly rows. The particles naturally develop facets -- resembling those cut in diamonds by a jeweler -- to exist at the lowest possible energy level needed to maintain the existence of the crystal.

Crystal facets 'bay' like hounds

The facets are adept at recognizing and transmitting signals. They "bay" in groups like hounds -- that is, emit a strong signal -- when a predetermined external frequency is "sniffed." That is because when a nanoparticle recognizes a band frequency and makes it resonate, that energy will pass to other nanoparticles, coupled by nearness and the local electromagnetic field. The alerted nanoparticles augment the response in a kind of echoing action, making noticeable what in less keen sensors may have passed unnoticed.

The initial formation of the crystals involves dispersing gold particulates about 5 nanometers in diameter into a "good" solvent, toluene. They then are subjected to a bath in a "hostile" solvent, isopropanol, which the particles supersaturate and from which they are then ejected or precipitated.

The ejected particles, refugees from the solution, then crystallize as small seeds. The growth of facets makes them available to respond to a wide variety of incoming chemical odors or light band frequencies.

The proper concentrations of materials and particle immersion times are important factors in creating large crystals. The process may take as long as a week.
The work was funded by the U.S. Department of Energy's Basic Energy Sciences office and by Sandia's Laboratory Directed Research and Development program. Work was carried out in part at the Center for Integrated Nanotechnologies, a DOE Office of Science user facility jointly managed by Sandia and Los Alamos national laboratories.

Sandia National Laboratories is a multimission laboratory operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration. Sandia Labs has major research and development responsibilities in nuclear deterrence, global security, defense, energy technologies and economic competitiveness, with main facilities in Albuquerque, New Mexico, and Livermore, California.

DOE/Sandia National Laboratories

Related Nanoparticles Articles:

Chemists perform surgery on nanoparticles
A team of chemists led by Carnegie Mellon's Rongchao Jin has for the first time conducted site-specific surgery on a nanoparticle.
Nanoparticles remain unpredictable
The way that nanoparticles behave in the environment is extremely complex.
Gold standards for nanoparticles
KAUST researchers reveal how small organic 'citrate' ions can stabilize gold nanoparticles, assisting research on the structures' potential.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
Nanoparticles hitchhiking their way along strands of hair
In shampoo ads, hair always looks like a shiny, smooth surface.
Better contrast agents based on nanoparticles
Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging.
Gentle cancer treatment using nanoparticles works
Cancer treatments based on laser irridation of tiny nanoparticles that are injected directly into the cancer tumor are working and can destroy the cancer from within.
Radiation-guided nanoparticles zero in on metastatic cancer
Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle.
Nanoparticles can grow in cubic shape
Use of nanoparticles in many applications, e.g. for catalysis, relies on the surface area of the particles.
Nanoparticles deliver anticancer cluster bombs
Scientists have devised a triple-stage 'cluster bomb' system for delivering the chemotherapy drug cisplatin, via tiny nanoparticles designed to break up when they reach a tumor.

Related Nanoparticles Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...