What makes diamonds blue? Boron from oceanic crustal remnants in Earth's lower mantle

August 01, 2018

Washington, DC--Blue diamonds--like the world-famous Hope Diamond at the National Museum of Natural History--formed up to four times deeper in the Earth's mantle than most other diamonds, according to new work published on the cover of Nature.

"These so-called type IIb diamonds are tremendously valuable, making them hard to get access to for scientific research purposes," explained lead author Evan Smith of the Gemological Institute of America, adding, "and it is very rare to find one that contains inclusions, which are tiny mineral crystals trapped inside the diamond."

Inclusions are remnants of the minerals from the rock in which the diamond crystallized and can tell scientists about the conditions under which it formed.

Type IIb diamonds owe their blue color to the element boron, an element that is mostly found on the Earth's surface. But analysis of the trapped mineral grains in 46 blue diamonds examined over two years indicate that they crystallized in rocks that only exist under the extreme pressure and temperature conditions of the Earth's lower mantle.

The research group--which included Carnegie's Steven Shirey, Emma Bullock, and Jianhua Wang--determined that blue diamonds form at least as deep as the transition zone between the upper and lower mantle--or between 410 and 660 kilometers below the surface. Several of the samples even showed clear evidence that they came from deeper than 660 kilometers, meaning they originated in the lower mantle. By contrast, most other gem diamonds come up from between 150 and 200 kilometers.

So how did the boron get down there if it is an element known for residing predominately in the shallow crust?

According to the hypothesis put forth by the research group, it came from seafloor that was conveyed down into the Earth's mantle when one tectonic plate slid beneath another--a process known as subduction.

The new study proposes that boron from the Earth's surface was incorporated into water-rich minerals like serpentine, which crystallized during geochemical reactions between seawater and the rocks of the oceanic plate. This reaction between rock and water is a process called serpentinization and can extend deep into the seafloor, even into the oceanic plate's mantle portion.

The group's discovery reveals that the water-bearing minerals travel far deeper into the mantle than previously thought, which indicates the possibility of a super-deep hydrological cycle.

"Most previous studies of super-deep diamonds had been carried out on diamonds of low quality," Shirey said. "But between our 2016 finding that the world's biggest and most-valuable colorless diamonds formed from metallic liquid deep inside Earth's mantle and this new discovery that blue diamonds also have super-deep origins, we now know that the finest gem-quality diamonds come from the farthest down in our planet."
-end-
This research was supported by a GIA Liddicoat Postdoctoral Research Fellowship, the Deep Carbon Observatory, and the European Research Council.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Diamond Articles from Brightsurf:

Getting single-crystal diamond ready for electronics
Researchers from Osaka University and collaborating partners polished single-crystal diamond to near-atomic smoothness without damaging it.

Turning diamond into metal
Researchers have discovered a way to tweak tiny needles of diamond in a controlled way to transform their electronic properties, dialing them from insulating, through semiconducting, all the way to highly conductive, or metallic.

Building a harder diamond
Scientists at the University of Tsukuba create a theoretical carbon-based material that would be even harder than diamond.

Quantum diamond sensing
Researchers from the University of Maryland and colleagues report a new quantum sensing technique that allows high-resolution nuclear magnetic resonance spectroscopy on small molecules in dilute solution in a 10 picoliter sample volume -- roughly equivalent to a single cell.

Shining like a diamond: A new species of diamond frog from northern Madagascar
Despite the active ongoing taxonomic progress on the Madagascar frogs, the amphibian inventory of this hyper-diverse island is still very far from being complete.

The IKBFU scientists created the first diamond x-ray micro lens
A diamond is a unique and expensive material. But it is almost indestructible which makes the lens made of it more economically profitable than metallic or polymeric ones in the long run.

Stanford research maps a faster, easier way to build diamond
With the right amount of pressure and surprisingly little heat, a substance found in fossil fuels can transform into pure diamond.

Bending diamond at the nanoscale
A team of Australian scientists has discovered diamond can be bent and deformed, at the nanoscale at least.

A tech jewel: Converting graphene into diamond film
Can two layers of the ''king of the wonder materials,'' i.e. graphene, be linked and converted to the thinnest diamond-like material, the ''king of the crystals''?

Researchers teleport information within a diamond
Researchers from the Yokohama National University have teleported quantum information securely within the confines of a diamond.

Read More: Diamond News and Diamond Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.