Nav: Home

What makes diamonds blue? Boron from oceanic crustal remnants in Earth's lower mantle

August 01, 2018

Washington, DC--Blue diamonds--like the world-famous Hope Diamond at the National Museum of Natural History--formed up to four times deeper in the Earth's mantle than most other diamonds, according to new work published on the cover of Nature.

"These so-called type IIb diamonds are tremendously valuable, making them hard to get access to for scientific research purposes," explained lead author Evan Smith of the Gemological Institute of America, adding, "and it is very rare to find one that contains inclusions, which are tiny mineral crystals trapped inside the diamond."

Inclusions are remnants of the minerals from the rock in which the diamond crystallized and can tell scientists about the conditions under which it formed.

Type IIb diamonds owe their blue color to the element boron, an element that is mostly found on the Earth's surface. But analysis of the trapped mineral grains in 46 blue diamonds examined over two years indicate that they crystallized in rocks that only exist under the extreme pressure and temperature conditions of the Earth's lower mantle.

The research group--which included Carnegie's Steven Shirey, Emma Bullock, and Jianhua Wang--determined that blue diamonds form at least as deep as the transition zone between the upper and lower mantle--or between 410 and 660 kilometers below the surface. Several of the samples even showed clear evidence that they came from deeper than 660 kilometers, meaning they originated in the lower mantle. By contrast, most other gem diamonds come up from between 150 and 200 kilometers.

So how did the boron get down there if it is an element known for residing predominately in the shallow crust?

According to the hypothesis put forth by the research group, it came from seafloor that was conveyed down into the Earth's mantle when one tectonic plate slid beneath another--a process known as subduction.

The new study proposes that boron from the Earth's surface was incorporated into water-rich minerals like serpentine, which crystallized during geochemical reactions between seawater and the rocks of the oceanic plate. This reaction between rock and water is a process called serpentinization and can extend deep into the seafloor, even into the oceanic plate's mantle portion.

The group's discovery reveals that the water-bearing minerals travel far deeper into the mantle than previously thought, which indicates the possibility of a super-deep hydrological cycle.

"Most previous studies of super-deep diamonds had been carried out on diamonds of low quality," Shirey said. "But between our 2016 finding that the world's biggest and most-valuable colorless diamonds formed from metallic liquid deep inside Earth's mantle and this new discovery that blue diamonds also have super-deep origins, we now know that the finest gem-quality diamonds come from the farthest down in our planet."
-end-
This research was supported by a GIA Liddicoat Postdoctoral Research Fellowship, the Deep Carbon Observatory, and the European Research Council.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Diamond Articles:

The IKBFU scientists created the first diamond x-ray micro lens
A diamond is a unique and expensive material. But it is almost indestructible which makes the lens made of it more economically profitable than metallic or polymeric ones in the long run.
Stanford research maps a faster, easier way to build diamond
With the right amount of pressure and surprisingly little heat, a substance found in fossil fuels can transform into pure diamond.
Bending diamond at the nanoscale
A team of Australian scientists has discovered diamond can be bent and deformed, at the nanoscale at least.
A tech jewel: Converting graphene into diamond film
Can two layers of the ''king of the wonder materials,'' i.e. graphene, be linked and converted to the thinnest diamond-like material, the ''king of the crystals''?
Researchers teleport information within a diamond
Researchers from the Yokohama National University have teleported quantum information securely within the confines of a diamond.
News from the diamond nursery
Unlike flawless gems, fibrous diamonds often contain small saline inclusions.
Nanoscale thermometers from diamond sparkles
The development of a novel, non-invasive technique that uses quantum light to measure temperature at the nanoscale will have immediate applications for both industry and fundamental scientific research, scientists say.
Unprecedented insight into two-dimensional magnets using diamond quantum sensors
For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale.
Diamond doves do not optimize their movements for flexible perches
The diamond dove may preferentially select large, stiff materials for takeoff and landing sites, according to a study published on July 25 in the open-access journal PLOS ONE.
Tunable diamond string may hold key to quantum memory
Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the University of Cambridge engineered diamond strings that can be tuned to quiet a qubit's environment and improve memory from tens to several hundred nanoseconds, enough time to do many operations on a quantum chip.
More Diamond News and Diamond Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.