Nav: Home

Common evolutionary origins between vertebrates and invertebrates revealed

August 01, 2018

Tsukuba, Japan - Placodes and neural crests are defining features of vertebrates (animals with a spinal cord surrounded by cartilage or bone). Placodes are embryonic structures that develop into sensory organs such as ear, nose, and lens cells, while neural crests develop into various cell lineages such as bone, craniofacial cartilage, and epidermal sensory neurons.

In spite of extensive study on placodes and neural crests, their evolutionary origins remain unclear. The puzzle is further compounded by evidence of the presence of rudiments of both cell types in invertebrate chordates (animals without a spinal cord). This spurred a team of Tsukuba-centered researchers to unravel this evolution mystery.

"For the purpose of our study, the researchers used a combination of lineage tracing, gene disruption and single-cell RNA-sequencing assays to explore the properties of the lateral plate ectoderm, a peripheral embryonic structure, of the proto-vertebrate, Ciona intestinalis, a marine invertebrate animal commonly known as the sea squirt," explains Ryoko Horie, one of three co-first authors of the study which was in the prestigious journal Nature.

By analyzing the regulatory "blueprint" of the Ciona embryo, the researchers identified several genetic determinants of the lateral plate ectoderm, and successfully obtained evidence for the interlocking regulatory interactions among them.

"The most striking deviation between the Ciona and vertebrate regulatory fate maps is the compartmentalization of the Ciona front lateral plate into two distinct domains," says corresponding author Takeo Horie.

The researchers found that the antero-posterior compartmentalization of the Ciona lateral plate led to the development of related but distinct sensory cell types, including palp sensory cells (PSCs), anterior trunk epidermal neurons (aATENs) and bipolar tail neurons (BTNs). aATENS have been shown to have dual properties of placode-derived chemosensory neurons, such as neurons involved in the sense of smell, while BTNs are thought to share properties with neural crest-derived dorsal root ganglia, a cluster of neurons (a ganglion) in a dorsal root of a spinal nerve.

Notably, the BTNs readily transformed into PSCs when regulatory genes of the former were misexpressed. The proof of transformation was confirmed by whole-embryo single-cell RNA-sequencing assays.

"Taken together, our findings suggest the possibility of the entire lateral plate of the last shared tunicate and vertebrate ancestor being the source of both placodal and neural crest derivatives in vertebrates," says Takeo Horie.
-end-


University of Tsukuba

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...