Nav: Home

Harmful dyes in lakes, rivers can become colorless with new, sponge-like material

August 01, 2018

Dyes are widely used in industries such as textiles, cosmetics, food processing, papermaking and plastics. Globally, we produce about 700,000 metric tons -- the weight of two Empire State Buildings -- of dye each year to color our clothing, eye shadow, toys and vending machine candy.

During manufacturing, about a tenth of all dye products are discharged into the waste stream. Most of these dyes escape conventional wastewater-treatment processes and remain in the environment, often reaching lakes, rivers and holding ponds, and contaminating the water for the aquatic plants and animals that live there. Even just a little added color can block sunlight and prevent plant photosynthesis, which disrupts the entire aquatic ecosystem.

A team led by the University of Washington has created an environmentally friendly way to remove color from dyes in water in a matter of seconds. The technique was described in a paper published online in June in the journal Applied Catalysis B: Environmental.

"A small amount of dye can pollute a large volume of water, so we needed to find a way to very quickly and efficiently remove the color," said senior author Anthony Dichiara, an assistant professor of bioresource science and engineering in the UW School of Environmental and Forest Sciences. "We were pretty impressed with what we were able to achieve."

The research team developed a method that removes color from water using a sponge-like material they created from wood pulp and small bits of metal. Cellulose, the main structure in plant cell walls and the most abundant natural material on Earth, provides the backbone of the material, which is decorated with tiny pieces of palladium. This metal serves as a catalyst to help remove color quickly.

Instead of removing dye from water, the research team sought to change the color of the dyes to something that falls outside of what we can see in the visible spectrum. A chemical reaction can, for example, disrupt the color red and make it appear clear, or colorless. In the case of dye waste products that artificially color the water in lakes and prevent photosynthesis, changing the dye from red to clear should allow plants to grow normally again.

The chemical reduction of dyes using molecules called "reducing agents" can alter the dye structure and change its color from red or blue to clear. However, the reaction is not very efficient and can take weeks to occur. The UW's material contains a catalyst that works with the reducing agent to speed this process up to almost instantaneous.

In the new paper, the researchers describe the simple and sustainable process they developed to make the color-removing material. The researchers combined cellulose molecules with palladium metal, heated the solution and mixed it in a blender. Then they purified and freeze-dried the material so it became a porous, reusable substance. The resulting sponge is more than 99 percent air -- its large pores allow water to flow in and out, while the metal catalyst particles within the material work to remove any color present.

Just like a real sponge, the material can be squeezed of its water and reused multiple times without losing the ability to remove color from water. The researchers say it is difficult to make such a lightweight material that is flawless after many rounds of squeezing and filtering, especially when the sponge must maintain its Swiss cheese-like structure fused with color-reducing particles.

The researchers tested their sponge in the lab using blue and red dyes commonly found in the textile industry. They poured the colored water -- already mixed with the existing molecule that helps reduce color -- over the sponge. As the liquid passed through the material, the resulting water was clear. In another test, they swirled the sponge material inside a jar containing blue-dyed water, and after about 10 seconds the color disappeared.

Outside of lab tests, the researchers say that many small sponge-like materials could be released into a lake polluted with dye, along with the molecule to help reduce the color. Similar to swirling a tea bag round a mug, the sponges could be dragged around the lake until all of the color disappears.

"Just a little amount of dye can change the color of a lake dramatically," Dichiara said. "This method could work well when you have low concentrations of dye in water that you need to take care of really quickly."
-end-
First author is Jin Gu, a visiting scholar at the UW and associate professor at South China Agricultural University, and other co-authors are Chuanshuang Hu and Weiwei Zhang of South China Agricultural University.

Funding for this work is from the Guangdong Provincial Department of Science and Technology, the U.S. Department of Agriculture's National Institute of Food and Agriculture, and the Bureau of Guangdong Forestry.

For more information, contact Dichiara at abdichia@uw.edu.

Video, photos available for download: http://www.washington.edu/news/2018/08/01/harmful-dyes-in-lakes-rivers-can-become-colorless-with-new-sponge-like-material/

University of Washington

Related Color Articles:

Why don't Americans have a name for the color 'light blue?'
'Mizu' translates to 'water' and has emerged in recent decades as a unique shade in the Japenese lexicon, new research has found.
The evolution of Japanese color vocabulary over the past 30 years
Color plays an important role in conveying visual information, but the language we use to express what we see is limited.
Jumping spiders court in color
UC biologist discovers unique visual diversities for rare color vision in two groups of jumping spiders.
A new technique for structural color, inspired by birds
Structural coloration has long interested researchers and engineers because of its durability and potential for application in solar arrays, biomimetic tissues and adaptive camouflage.
In food packaging, color matters
Food shoppers associate qualities of healthfulness and taste with the color of the packaging, so manufacturers must understand what light versus dark colors mean to buyers.
The color of birds
New research provides insight into plumage evolution.
UA report: Few studies look at well-being of LGB youth of color
While research on lesbian, gay and bisexual youth has increased, studies often fail to explore the well-being of young people of color.
What dinosaurs' color patterns say about their lives
After reconstructing the color patterns of a well-preserved dinosaur from China, researchers have found that the long-lost species called Psittacosaurus was light on its underside and darker on top.
Molecular switch for controlling color and fluorescence
Researchers in Japan have developed a molecular switching technique to control the visible color and fluorescent properties of a compound by using hydrogen and oxygen gas.
Camouflage artists, in color
A new study, co-authored by the father-and-son team of Christopher and Alexander Stubbs, suggests that chromatic aberration may explain how cephalopods -- the animal family that includes squid, octopi and cuttlefish -- can demonstrate such remarkable camouflage abilities despite only being able to see in black and white.

Related Color Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.