Nav: Home

Fruitful discoveries: The power to purify water is in your produce

August 01, 2018

(Carlisle, Pa.) -Newly published research by a Dickinson College chemistry professor is advancing what we know about the power of fruit and vegetable peels to remove pollutants, such as dyes and heavy metals, from water. Cindy Samet, professor of chemistry, and her students performed water purification experiments using peels and seeds from more than a dozen varieties of foods--from pumpkin and okra to lemon and banana--and found they removed methylene blue, lead and copper through the process of adsorption, a chemical bonding of the pollutant molecules to the surface of the peels.

The study, "Fruit and Vegetable Peels as Efficient Renewable Adsorbents for Removal of Pollutants from Water: A Research Experience for General Chemistry Students," was published in the Journal of Chemical Education. In 2015, Suresh Valiyaveettil, Samet's coauthor and a professor at the National University of Singapore, published the original research on which Samet based her course. His study analyzed the ability of avocado, hamimelon and dragon fruit peels to remove pollutants from water. In this video, Samet demonstrates how dried avocado peel can adsorb large amounts of methylene blue onto its surface in a matter of hours.

Samet followed Valiyaveettil's protocol for cleaning the surface of the fruit by first boiling the peels/seeds to remove soluble surface impurities. The peels were then dried and crushed before being placed in a solution containing pollutants. Among the findings, lemon seeds removed 100 percent of lead ions, while the peels removed 96.4 percent. Okra peels also removed 100 percent of lead ions, while the seeds removed 50 percent.

"The results expand on what we know about fruit and vegetable peels as an organic, renewable, low-cost method of removing pollutants from water," said Samet. "We replicated the results from Suresh's lab with avocado and then studied never-before-tested fruits and vegetable peels and seeds. This is exciting because it is likely that this method of purification can make its way from lab to kitchen."

In the kitchen, Samet can envision dried peels being used as a natural, at-home option to remove impurities from drinking water. But Samet's classroom project focused on industrial effluents such as dyes and heavy metal ions. On a large scale, Samet envisions the peels may one day provide an affordable solution in parts of the world with dwindling supplies of clean, safe drinking water.
-end-


Dickinson College

Related Drinking Water Articles:

Research targets PFOA threat to drinking water
A highly toxic water pollutant, known as perfluorooctanoic acid (PFOA), last year caused a number of US communities to close their drinking water supplies.
Neonicotinoids detected in drinking water in agricultural area
Concern over the use of neonicotinoid pesticides is growing as studies find them in rivers and streams, and link them with declining bee populations and health effects in other animals.
Graphene sieve turns seawater into drinking water
Graphene-oxide membranes have attracted considerable attention as promising candidates for new filtration technologies.
Glowing crystals can detect, cleanse contaminated drinking water
Motivated by public hazards associated with contaminated sources of drinking water, a team of scientists has successfully developed and tested tiny, glowing crystals that can detect and trap heavy-metal toxins like mercury and lead.
Study: Conservation preferred way to protect drinking water
A new study from the University of Delaware found when given the choice, people prefer to invest their money in conservation, such as protecting key areas of a watershed -- also referred to as green infrastructure -- than traditional water treatment plants -- also referred to as gray infrastructure.
Just add water? New MRI technique shows what drinking water does to your appetite, stomach and brain
Stomach MRI images combined with functional fMRI of the brain activity have provided scientists new insight into how the brain listens to the stomach during eating.
Is fluoride in drinking water safe? (video)
It's in our tap water, toothpaste and even in tea.
Drinking more water associated with numerous dietary benefits, study finds
University of Illinois professor Ruopeng An led a study that examined the dietary habits of more than 18,300 US adults, and found the majority of people who increased their consumption of plain water by 1 percent reduced their total daily calorie intake as well as their consumption of saturated fat, sugar, sodium and cholesterol.
Is disinfectant necessary for safe drinking water?
A difference has emerged between some Western European countries and the US regarding the use of residual disinfectants to offer safe drinking water.
Does living near an oil or natural gas well affect your drinking water?
Does living near an oil or natural gas well affect the quality of your drinking water?

Related Drinking Water Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.