Nav: Home

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells

August 01, 2018

In an article published July 17, 2018 by Nature Communications, a highly collaborative team of researchers at the Medical University of South Carolina (MUSC) and Ohio State University report that normal breast cells can prevent successful radiation treatment of breast cancer due to dysregulation between tumor suppressors and oncogenes. Tumor suppressors act like brakes that stop cells from undergoing uncontrolled growth, while oncogenes are the gas pedal. The tumor suppressor gene of interest in this study is PTEN, which is often mutated in human cancer cells.

An initial surprising observation that the stroma, or supportive connective tissue, in some women without cancer had abnormally low PTEN fueled this study.

"The results suggest that PTEN loss in normal cells may be a biomarker for identifying breast cancer patients who would benefit from adding specific inhibitors in combination with the standard radiation therapy," says Michael C. Ostrowski, Ph.D., a professor in the Department of Biochemistry and Molecular Biology at MUSC, a member of the MUSC Hollings Cancer Center, and senior author on the article.

The cancer research field did not previously know that early PTEN-focused events in the breast stroma are capable of triggering malignant development in the breast.

In human breast cancer, expression of the tumor suppressor PTEN and the cell growth promoter active protein kinase B (AKT) are inversely correlated. In other words, when PTEN is reduced, AKT is significantly increased. However, researchers knew neither why this occurs nor how it could be useful clinically.

To address this specific question, the team developed a mouse model to look at what occurs when PTEN is not expressed specifically in the breast stroma. This special model revealed that the absence of PTEN tumor suppressor in the breast stroma leads to larger mammary (breast) tumors.

Digging deeper, the MUSC researchers wanted to understand how stromal cells without PTEN could lead to such rapid growth of cancer cells. Surprisingly, connective stromal cells that do not have PTEN release more of soluble factors called EGF ligands. The EGF ligands promote abnormal growth in neighboring epithelial cells, which line the surfaces of internal organs including in breast tissue.

Radiation therapy is a mainstream treatment for breast cancers as radiation causes cell death in the targeted cells. When the PTEN level is low in the breast cancer connective tissue cells, the tumor cells have a high degree of genetic instability. Genetically unstable cells do not follow the normal growth checkpoints, meaning that the cells ignore cell death signals. The finding of the connection between low PTEN levels and reduced response to radiation therapy.

"This allows for a multi-pronged attack on the tumor, by predicting who will respond the best to radiation therapy in combination with chemotherapy and other targeted treatments" says Ostrowski.

The team of researchers was able to progress quickly from initial observation to preclinical findings because they could draw on the skill sets of oncologists, biostatisticians, pathologists, and researchers available via the MUSC Hollings Cancer Center Translational Core. Development of this core will enable vital cancer research, such as that reported in this work, to move from pre-clinical studies to clinical trial.

The research is moving quickly. Another publication looking at the PTEN mechanism even more in depth will soon be published. A small clinical trial to investigate the correlation between reduction in stromal PTEN and radiation resistance would be game-changing to the field. One option is to use the PTEN data to divide the patients into groups, leading to more personalized medicine. Using this tool, physicians could decide which breast cancer patients would benefit the most from radiation and spare the patients who are not likely to respond from the costs and side effects of the treatment.

By discovering that normal connective tissue cells might be predisposing epithelial cells to cancerous changes, the research team may have pinpointed a vulnerability in cancer cells.

"We may have found an Achilles heel for cancer cells, because the stromal cells and PTEN pathways can be targeted," says Ostrowski.
-end-
About MUSC

Founded in 1824 in Charleston, The Medical University of South Carolina is the oldest medical school in the South. Today, MUSC continues the tradition of excellence in education, research, and patient care. MUSC educates and trains more than 3,000 students and residents, and has nearly 13,000 employees, including approximately 1,500 faculty members. As the largest non-federal employer in Charleston, the university and its affiliates have collective annual budgets in excess of $2.2 billion. MUSC operates a 750-bed medical center, which includes a nationally recognized Children's Hospital, the Ashley River Tower (cardiovascular, digestive disease, and surgical oncology), Hollings Cancer Center (a National Cancer Institute designated center) Level I Trauma Center, and Institute of Psychiatry. For more information on academic information or clinical services, visit http://academicdepartments.musc.edu/musc/">musc.edu. For more information on hospital patient services, visit muschealth.org.

About MUSC Hollings Cancer Center

The Hollings Cancer Center at the Medical University of South Carolina is a National Cancer Institute-designated cancer center and the largest academic-based cancer research program in South Carolina. The cancer center comprises more than 120 faculty cancer scientists with an annual research funding portfolio of $44 million and a dedication to reducing the cancer burden in South Carolina. Hollings offers state-of-the-art diagnostic capabilities, therapies and surgical techniques within multidisciplinary clinics that include surgeons, medical oncologists, radiation therapists, radiologists, pathologists, psychologists and other specialists equipped for the full range of cancer care, including more than 200 clinical trials. For more information, visit http://www.hollingscancercenter.org

Medical University of South Carolina

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.