Nav: Home

Supercomputing improves biomass fuel conversion

August 01, 2019

Fuels made from agricultural or forestry wastes known as lignocellulosic biomass have long been a champion in the quest to reduce use of fossil fuels. But plant cell walls have some innate defenses that make the process to break them down more difficult and costly than it could be.

In a leap forward that could be a game changer for understanding how plant biomass can be more efficiently broken down, a research team at the University of California, Riverside have joined forces with teams at Oak Ridge National Laboratory and the University of Central Florida to create a chemical roadmap to breach these defenses.

In order to access the energy-rich sugars found in the plant cell walls, researchers have renewed focus on solvating lignin, a complex polymer also found in plant cell walls that acts as a natural shield, blocking both chemical and biological attack. Lignin is particularly effective in preventing commercial enzymes from digesting cellulose, which makes up the bulk of sugars found in biomass.

In the past, different specialized chemicals and pretreatment methods have been used to improve enzyme access to cellulose but were ineffective at removing lignin. The use of strong acids, ionic liquids, ammonia, and sulfite treatments have somewhat improved the digestibility of cellulose, but these methods also leave lignin behind, making cellulose expensive to recover. Other methods have applied co-solvents such as ethanol and acetone solvate to remove lignin, but they require very high reaction temperatures that also cause the remaining sugars to degrade.

As a result, economically viable methods of transforming biomass into biofuels have yet to be realized.

Charles Cai, an assistant research engineer at the Center for Environmental Research and Technology in the Marlan and Rosemary Bourns College of Engineering at UC Riverside, and Abhishek S. Patri, a doctoral student in chemical and environmental engineering, led a team of researchers taking a new direction to focus on identifying highly specialized co-solvents, substances added to a primary solvent to make it more effective, that can facilitate milder temperature solvation and release of lignin from the plant cell walls. This is known as a "lignin-first" approach to breaking down biomass.

The UC Riverside researchers enlisted the research team at Oak Ridge National Laboratory's Center of Molecular Biophysics, led by Jeremy Smith, to help construct a 1.5 million atom molecular simulation to reveal how the co-solvent pair consisting of tetrahydrofuran, or THF, and water are particularly effective at altering the interactions between lignin and cellulose, helping to drive multiple key mechanisms responsible for breaking down biomass.

The team discovered that pretreating plant biomass with THF-water caused lignin globules on the cellulose surface to expand and break away from one another and away from the cellulose fibers. The expanded lignin was also more exposed to catalytic fragmentation by dilute acid. As a result, lignin could be more efficiently depolymerized, solubilized, and transported out of the cell wall at milder treatment conditions.

The nearly complete removal of lignin also allowed the remaining cellulose fibers to be more susceptible to enzyme attack. In fact, after mild THF co-solvent treatment, the enzymes added to the remaining cellulose-rich solids achieved complete hydrolysis to glucose sugars.

Collaborating researchers at the University of Central Florida, led by Laurene Tetard, helped to confirm the observations made from the molecular simulations and enzymatic studies by using powerful lasers and nano-infrared imaging to optically track lignin's rearrangement and removal from the cell wall of micron-thick slices of hardwood.

Finally, Oak Ridge National Laboratory researchers Yunqiao Pu and Arthur Ragauskas showed that lignin extracted from hardwood pretreated with THF co-solvent was significantly depolymerized and contained fewer unwanted reactions than lignin produced from other acidic pretreatment methods.

By putting lignin first, highly functional co-solvents can help to integrate multiple processing steps while allowing both lignin and sugars to be easily recovered as valuable chemical building blocks, making renewable fuel production easier and more cost-effective. The research team hopes that by revealing the synergistic mechanisms of biomass breakdown by co-solvents THF and water, they can inspire others to identify additional multifunctional co-solvent pairs.
-end-
The paper, "A multifunctional co-solvent pair reveals molecular principles of biomass deconstruction," is published in the Journal of the American Chemical Society. In addition to Cai and Patri, authors include Barmak Mostofian; Yunqiao Pu; Nicholas Ciaffone; Mikhael Soliman; Micholas Dean Smith; Rajeev Kumar; Xiaolin Cheng; Charles E. Wyman; Laurene Tetard; Arthur J. Ragauskas; Jeremy C. Smith; and Loukas Petridis.

University of California - Riverside

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.