Nav: Home

New UK consortium to explore use of magnetic skyrmions in data storage

August 02, 2016

The use of nanoscale magnetic whirlpools, known as magnetic skyrmions, to create novel and efficient ways to store data will be explored in a new £7M research programme led by Durham University.

Skyrmions, which are a new quantum mechanical state of matter, could be used to make our day-to-day gadgets, such as mobile phones and laptops, much smaller and cheaper whilst using less energy and generating less heat.

It is hoped that better and more in-depth knowledge of skyrmions could address society's ever-increasing demands for processing and storing large amounts of data and improve current hard drive technology.

Scientists first predicted the existence of skyrmions in 1962 but they were only discovered experimentally in magnetic materials in 2009.

The UK team, funded by the Engineering and Physical Sciences Research Council (EPSRC), now aims to make a step change in our understanding of skyrmions with the goal of producing a new type of demonstrator device in partnership with industry.

Skyrmions, tiny swirling patterns in magnetic fields, can be created, manipulated and controlled in certain magnetic materials. Inside a skyrmion, magnetic moments point in different directions in a self-organised vortex. Skyrmions are only very weakly coupled to the underlying atoms in the material, and to each other, and their small size means they can be tightly packed together. Together with the strong forces that lock magnetic fields into the skyrmion pattern, the result is that the magnetic information encoded by skyrmions is very robust.

Scientists can potentially move a skyrmion with 100,000 times less energy than is needed to move a ferromagnetic domain, the objects currently used in the memory of our computers and smartphones. Currently when we access information through the web, we remotely use hard disk drives that generate lots of heat and waste lots of energy. Skyrmionic technology could allow this to be done on smaller scale devices which would use much less energy.

Professor Peter Hatton from the Department of Physics at Durham University, who heads the research team, said: "Skyrmions hold so much promise for advancing our basic understanding of matter and, crucially, also for using them as highly efficient memory elements.

"Within the new consortium, we will bring together experts in materials synthesis and theoretical and experimental techniques so we can answer questions about the status of magnetic skyrmions and develop technological applications based on this new realm of science, known as topological physics.

"We will work very closely with industry partners and align our scientific programme with the engineering and commercial realities of modern-day information technologies."

The national research group includes experts from the universities of Durham, Warwick, Oxford, Cambridge and Southampton.

The first prediction of a new type of stable configuration came from British physicist Tony Skyrme and has since opened up a whole variety of different sized and shaped skyrmion objects with different properties to conventional matter. However, numerous questions remain unanswered which focus on how best to exploit the unique magnetic properties of these magnetic excitations in devices.

The three generic themes the team will look at are:
  • The development, discovery and growth of magnetic materials that host skyrmion spin textures;
  • A greater understanding of the physics of these objects;
  • Engineering of the materials to application.
The research team will use state-of-the-art facilities such as synchrotron, neutron and muon sources both within the UK and internationally. The research is funded from summer 2016 until 2022.
-end-
The research team is currently looking for five postdoctoral research associates to join the project. For more information about these opportunities, please visit http://www.skyrmions.ac.uk

Durham University

Related Magnetic Fields Articles:

Controlling artificial cilia with magnetic fields and light
Researchers have made artificial cilia, or hair-like structures, that can bend into new shapes in response to a magnetic field, then return to their original shape when exposed to the proper light source.
Are gamma-ray bursts powered by a star's collapsing magnetic fields?
In its final moments of life, a distant massive star releases an intense burst of high-energy gamma radiation - a Gamma Ray Burst (GRB) - the brightest sources of energy in the universe, detectable to humans through powerful telescopes.
Not everything is ferromagnetic in high magnetic fields
High magnetic fields have a potential to modify the microscopic arrangement of magnetic moments because they overcome interactions existing in zero field.
Ultracold gases in time-dependent magnetic fields
Zk Noor Nabi from Zhejiang University, China and co-workers from the Indian Institute of Technology studied the phase transition between the Mott insulating (MI) and superfluid (SF) states of an ultracold gas in a time-dependent magnetic field.
Visualizing strong magnetic fields with neutrons
Researchers at the Paul Scherrer Institute PSI have developed a new method with which strong magnetic fields can be precisely measured.
Scientists deepen understanding of magnetic fields surrounding Earth and other planets
Now, a team of scientists has completed research into waves that travel through the magnetosphere, deepening understanding of the region and its interaction with our own planet, and opening up new ways to study other planets across the galaxy.
Technique pulls interstellar magnetic fields within easy reach
A new, more accessible and much cheaper approach to surveying the topology and strength of interstellar magnetic fields -- which weave through space in our galaxy and beyond, representing one of the most potent forces in nature -- has been developed by researchers at the University of Wisconsin-Madison.
A bubbly new way to detect the magnetic fields of nanometer-scale particles
The method provides manufacturers with a practical way to measure and improve their control of the properties of magnetic nanoparticles for a host of medical and environmental applications.
Quantum sensing method measures minuscule magnetic fields
A new technique developed at MIT uses quantum sensors to enable precise measurements of magnetic fields in different directions.
The FASEB Journal: Magnetic fields enhance bone remodeling
Since the creation of 3D-printed (3DP) porous titanium scaffolds in 2016, the scientific community has been exploring ways to improve their ability to stimulate osteogenesis, or bone remodeling.
More Magnetic Fields News and Magnetic Fields Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.