Nav: Home

Patented bioelectrodes have electrifying taste for waste

August 02, 2016

EAST LANSING, Mich. - New research at Michigan State University and published in the current issue of Nature Communications shows how Geobacter bacteria grow as films on electrodes and generate electricity - a process that's ready to be scaled up to industrial levels.

The thick biofilm, a gelatin microbial dynamo of sorts, is a combination of cells loaded with cytochromes, metal-based proteins, and pili, hairlike protein filaments discovered and patented by MSU's Gemma Reguera, associate professor of microbiology.

The biofilms are comparable to an electrical grid. Each cell is a power plant, generating electrical discharges that are delivered to the underlying electrode using a network of cytochromes and pili. The cytochromes are the transformers and towers supplying electricity to the city. The pili represent the sparse-but-mighty powerlines that connect the towers, even those far away from the power plant, to the grid.

Cytochromes and pili work together for shorter ranges - the first 10 layers of cells or so closest to the electrode. As more cells stack on the electrode, the efficiency of the cytochrome as electron carrier diminishes, and the pili do all of the work - discharging electrons 1,000 times faster than normal.

"The pili do all of the work after the first 10 layers, and allow the cells to continue to grow on the electrode, sometimes beyond 200 cell layers, while generating electricity," said Reguera, who co-published the paper with MSU graduate student Rebecca Steidl and MSU postdoctoral student Sanela Lampa-Pastirk, who work in Reguera's lab. "This is the first study to show how electrons can travel such long distances across thick biofilms; the pili are truly like powerlines, at the nanoscale."

The cytochromes lose their transfer speed once they get farther away. Without the wires, you can't continue to grow the biofilm on the electrode, she added.

The methodical approach to dissect the contribution and interactions between the cytochromes and the pili was the key to this discovery. The researchers used a genetic approach to eliminate key electron carriers in the biofilms, cytochromes and conductive pili, and studied the effect of the mutations in the growth of the biofilm and ability to generate electricity. They also constructed a mutant that produced pili with reduced conductivity.

"We used the mutants to grow biofilms of precise thickness and capacity to produce electricity," Reguera said. "This information allows us to reconstruct the paths - cytochromes or pili - used by the cells to discharge electrons across the biofilm and to the underlying electrode."

How the biofilm is mechanistically stratified as it grows in thickness on the electrode without compromising electricity generation was a revelation.

"We went from constructing the cell equivalent of a 10-story building to a 15- and a 20-story building and demonstrated the coordinated action of cytochromes and pili in the bottom floors and the need to discharge electrons via the wires in the upper floors to grid," Reguera said. "We know that we can build 200-story buildings, which really opens up opportunities for which these biofilms can be used."

In their natural state, microbes have a taste for waste, she added. Reguera's bioelectrodes also have a big appetite for waste and are ready to be scaled up and used to cleanup industrial sites while producing electricity as a byproduct. The next phase of this research will explore potential spinoff company options to bring the bioelectrodes to market.
-end-
This research was funded by the National Science Foundation, an MTRAC grant supported by the State of Michigan 21st Century Jobs Funds (received through the Michigan Strategic Fund and administered by the Michigan Economic Development Corporation) and MSU AgBioResearch.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Michigan State University

Related Electrons Articles:

Deceleration of runaway electrons paves the way for fusion power
Fusion power has the potential to provide clean and safe energy that is free from carbon dioxide emissions.
Shining light on low-energy electrons
The classic method for studying how electrons interact with matter is by analyzing their scattering through thin layers of a known substance.
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence
An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time.
NASA mission uncovers a dance of electrons in space
NASA's MMS mission studies how electrons spiral and dive around the planet in a complex dance dictated by the magnetic and electric fields, and a new study revealed a bizarre new type of motion exhibited by these electrons.
'Hot' electrons don't mind the gap
Rice University scientists discover that 'hot' electrons can create a photovoltage about a thousand times larger than ordinary temperature differences in nanoscale gaps in gold wires.
Electrons used to control ultrashort laser pulses
We may soon get better insight into the microcosm and the world of electrons.
Supercool electrons
Study of electron movement on helium may impact the future of quantum computing.
Two electrons go on a quantum walk and end up in a qudit
There is a variety of physical systems that can be used to implement a separate quantum bit, but significantly less research has been done into systems of several qubits or qudits.
Radiation that knocks electrons out and down, one after another
Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter.
Controlling electrons in time and space
A new method has been developed to control electrons being emitted from metal tips.

Related Electrons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...