Nav: Home

Engineers harness the power of 3-D printing to help train surgeons, shorten surgery times

August 02, 2017

A team of engineers and pediatric orthopedic surgeons are using 3D printing to help train surgeons and shorten surgeries for the most common hip disorder found in children ages 9 to 16. In a recent study, researchers showed that allowing surgeons to prep on a 3D-printed model of the patient's hip joint cut by about 25 percent the amount of time needed for surgery when compared to a control group.

The team, which includes bioengineers from the University of California San Diego and physicians from Rady Children's Hospital, detailed their findings in a recent issue of the Journal of Children's Orthopaedics.

"Being able to practice on these 3D-models is crucial," said Dr. Vidyadhar Upasani, pediatric orthopedic surgeon at Rady Children's and UC San Diego and the paper's senior author.

In this study, Upasani operated on a total of 10 patients. For five of the patients, he planned the surgeries using 3D-printed models. He didn't use models to plan the other five. In addition, two other surgeons operated on a different group of five patients without using models. In the group where Upasani used 3D-printed models, surgeries were 38-45 minutes shorter compared with the two control groups. These time savings would translate into at least $2700 in savings per surgery, researchers said. By contrast, after the one-time cost of buying a 3D printer for about $2200, physicians can make a model for each surgery for about $10.

The results of the study were so positive that Rady Children's orthopedics department has acquired its own 3D printer, Upasani said. "I've seen how beneficial 3D models are," he said. "It's now hard to plan surgeries without them."

Slipped capital femoral epiphysis is a condition that affects about 11 in 100,000 children in the United States every year.

In this condition, the head of the patient's femur slips along the bone's growth plate, deforming it. The main goal of the surgery is to sculpt the femur back into its normal shape and restore hip function. This is difficult because during the surgery, the bone and its growth plate are not directly visible. So the surgeons can't visualize in 3D how the growth plate is deformed. The condition is associated with obesity and hormonal dysfunction and has become more common as obesity increases among young people.

Traditionally, before the surgery, physicians study X-rays of the surgery site taken from different angles, which they use to plan the bone cuts. During surgery, an X-ray fluoroscopy beam also shines periodically on the surgery site to help guide the physician. These methods are time consuming and expose the child to radiation. In addition, physicians don't have a physical model to educate patients or practice the surgery beforehand.

How the 3D-printed models were made


In this study, two UC San Diego students, Jason Caffrey, pursuing a Ph.D. in bioengineering, and Lillia Cherkasskiy, pursuing an M.D. and conducting her Independent Studies Project, teamed up with Upasani, bioengineering professor Robert Sah, and their colleagues. They used commercially available software to process CT scans of the patients' pelvis and create a computerized model of bone and growth plate for 3D printing. The models allowed surgeons to practice and visualize the surgery before they operated in the real world.

One of the biggest obstacles was getting the right texture for the 3D prints, so that they mimic bone. If the texture was too thick, the model would melt under the surgeon's tools; if too thin, it would break. The engineers finally settled on a honeycomb-like structure to mimic bones for their models. The printing process itself took four to 10 hours for each print.

The 3D printing effort was led by Caffrey, in the lab of professor Sah at the Jacobs School of Engineering at UC San Diego. The inspiration and foundations for the study came from BENG 1, a hands-on engineering class that Sah, a world leader in tissue engineering and cartilage repair, co-taught in 2015 and Caffrey helped set up. Students 3D printed models of complex ankle bone fractures from CT scans of UC San Diego patients. BENG 1 continues to be a part of the "Experience Engineering" initiative introduced by Albert P. Pisano, dean of the Jacobs School of Engineering at UC San Diego.
-end-
Caffrey is now working on his medical degree at the UC San Diego School of Medicine. He is still collaborating with Upasani at Rady Children's to use 3D printed models to evaluate the best way to surgically correct hip dysplasia, a developmental deformation or misalignment of the hip joint found in infants.

Full Flickr photo gallery: https://www.flickr.com/photos/jsoe/albums/72157684426727521

University of California - San Diego

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Engineering: An Illustrated History from Ancient Craft to Modern Technology (100 Ponderables)
by Tom Jackson (Editor) (Author), Tom Jackson (Editor)

From ancient aqueducts to soaring skyscrapers, explore engineering milestones over the centuries.


Combining engaging text with captivating images and helpful diagrams, renowned science writer Tom Jackson guides readers through the history of Engineering in the 7th installment of the groundbreaking PonderablesTM series.


Engineering is all around us. From our bridges, tunnels and skyscrapers, to our cars, computers and smartphones, engineering shapes our world and influences just about everything we see and do. And it s been that way for longer than you might think.... View Details


Basic Machines and How They Work
by Naval Education And Training Program (Author)

This revised edition of an extremely clear Navy training manual leaves nothing to be desired in its presentation. Thorough in its coverage of basic theory, from the lever and inclined plane to internal combustion engines and power trains, it requires nothing more than an understanding of the most elementary mathematics.
Beginning with the simplest of machines — the lever — the text proceeds to discussions of the block and tackle (pulleys and hoists), wheel and axle, the inclined plane and the wedge, the screw, and different types of gears (simple, spur, bevel, herringbone, spiral,... View Details


The Book of Massively Epic Engineering Disasters: 33 Thrilling Experiments Based on History's Greatest Blunders (Irresponsible Science)
by Sean Connolly (Author)

It’s hands-on science with a capital “E”—for engineering.

Beginning with the toppling of the Colossus of Rhodes, one of the seven wonders of the ancient world, to the destructive, laserlike sunbeams bouncing off London’s infamous “Fryscraper” in 2013, here is an illustrated tour of the greatest engineering disasters in history, from the bestselling author of The Book of Totally Irresponsible Science.

Each engineering disaster includes a simple, exciting experiment or two using everyday household items to explain the underlying science and put... View Details


The Beginner's Guide to Engineering: Mechanical Engineering
by Mark Huber (Author)

The Beginner’s Guide to Engineering series is designed to provide a very simple, non-technical introduction to the fields of engineering for people with no experience in the fields. Each book in the series focuses on introducing the reader to the various concepts in the fields of engineering conceptually rather than mathematically. These books are a great resource for high school students that are considering majoring in one of the engineering fields, or for anyone else that is curious about engineering but has no background in the field. Books in the series: 1. The Beginner’s Guide to... View Details


Studying Engineering: A Road Map to a Rewarding Career (Fourth Edition)
by Raymond B. Landis (Author)

About the Book
Since Studying Engineering: A Road Map to a Rewarding Career exploded onto the market in 1995, it has become the best selling Introduction to Engineering textbook of all time. Adopted by over 300 U.S. institutions, and reaching more than 150,000 students, the book has made major inroads into the "sink or swim" paradigm of engineering education. Armed with the book as a powerful tool for "student development," large numbers of engineering programs have implemented Introduction to Engineering courses to improve the academic performance and retention rates of their... View Details


101 Things I Learned in Engineering School
by John Kuprenas (Author), Matthew Frederick (Collaborator)

In this unique primer, an experienced civil engineer and instructor presents the physics and fundamentals that underlie the many fields of engineering. Far from a dry, nuts-and-bolts exposition, however, 101 THINGS I LEARNED® IN ENGINEERING SCHOOL probes real-world examples to show how the engineer's way of thinking can-and sometimes cannot-inform our understanding of how things work. Questions from the simple to the profound are illuminated throughout: Why shouldn't soldiers march across a bridge? Why do buildings want to float and cars want to fly? What is the difference between thinking... View Details


The Engineering Book: From the Catapult to the Curiosity Rover, 250 Milestones in the History of Engineering (Sterling Milestones)
by Marshall Brain (Author)

Engineering is where human knowledge meets real-world problems—and solves them. It's the source of some of our greatest inventions, from the catapult to the jet engine. Marshall Brain, creator of the How Stuff Works series and a professor at the Engineering Entrepreneurs Program at NCSU, provides a detailed look at 250 milestones in the discipline. He covers the various areas, including chemical, aerospace, and computer engineering, from ancient history to the present. The topics include architectural wonders like the Acropolis, the Great Wall of China, and the Eiffel Tower; transportation... View Details


Inner Engineering: A Yogi's Guide to Joy
by Sadhguru (Author)

NEW YORK TIMES BESTSELLER • Thought leader, visionary, philanthropist, mystic, and yogi Sadhguru presents Western readers with a time-tested path to achieving absolute well-being: the classical science of yoga.

NAMED ONE OF THE TEN BEST BOOKS OF THE YEAR BY SPIRITUALITY & HEALTH

The practice of hatha yoga, as we commonly know it, is but one of eight branches of the body of knowledge that is yoga. In fact, yoga is a sophisticated system of self-empowerment that is capable of harnessing and activating inner energies in such a way that your body and... View Details


Practical Electronics for Inventors, Fourth Edition
by Paul Scherz (Author), Simon Monk (Author)

A Fully-Updated, No-Nonsense Guide to Electronics

Advance your electronics knowledge and gain the skills necessary to develop and construct your own functioning gadgets. Written by a pair of experienced engineers and dedicated hobbyists, Practical Electronics for Inventors, Fourth Edition, lays out the essentials and provides step-by-step instructions, schematics, and illustrations. Discover how to select the right components, design and build circuits, use microcontrollers and ICs, work with the latest software tools, and test and tweak your creations. This... View Details


Site Reliability Engineering: How Google Runs Production Systems
by Betsy Beyer (Editor), Chris Jones (Editor), Jennifer Petoff (Editor), Niall Richard Murphy (Editor)

The overwhelming majority of a software system’s lifespan is spent in use, not in design or implementation. So, why does conventional wisdom insist that software engineers focus primarily on the design and development of large-scale computing systems?

In this collection of essays and articles, key members of Google’s Site Reliability Team explain how and why their commitment to the entire lifecycle has enabled the company to successfully build, deploy, monitor, and maintain some of the largest software systems in the world. You’ll learn the principles and practices that enable... View Details

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Simple Solutions
Sometimes, the best solutions to complex problems are simple. But simple doesn't always mean easy. This hour, TED speakers describe the innovation and hard work that goes into achieving simplicity. Guests include designer Mileha Soneji, chef Sam Kass, sleep researcher Wendy Troxel, public health advocate Myriam Sidibe, and engineer Amos Winter.
Now Playing: Science for the People

#448 Pavlov (Rebroadcast)
This week, we're learning about the life and work of a groundbreaking physiologist whose work on learning and instinct is familiar worldwide, and almost universally misunderstood. We'll spend the hour with Daniel Todes, Ph.D, Professor of History of Medicine at The Johns Hopkins University, discussing his book "Ivan Pavlov: A Russian Life in Science."