Mapping blue carbon in mangroves worldwide

August 02, 2018

BATON ROUGE - Mangroves are tropical forests that thrive in salt water and are found in a variety of coastal settings from deltas to estuaries to weathered reefs and limestone rocks worldwide. Mangroves can store greater amounts of carbon than any other terrestrial ecosystem, which helps reduce the amount of carbon dioxide and greenhouse gases in the atmosphere. When carbon is stored in the ocean or coastal ecosystems, including mangrove forests, it is called blue carbon. However, a more precise estimate of how much blue carbon is stored by mangroves around the world has not been available until recently. This research was published today in Ecological Society of America's journal Frontiers in Ecology and the Environment.

"While past estimates of blue carbon have done a remarkable job in delivering first order estimates of how ecosystems mitigate carbon enrichment in the atmosphere, we noted that the omission of unique coastal characteristics, such as tides and river flow, reduced the accuracy of global predictions, especially concerning how carbon storages may vary from one country to the next," said lead author Robert Twilley, who is a professor in the LSU College of the Coast & Environment's Department of Oceanography & Coastal Sciences and the executive director of the Louisiana Sea Grant College Program.

Twilley and colleagues overlaid a high-resolution map of mangrove forest cover over the various types of nearshore coastal environmental systems to calculate a more accurate estimate of the amount of carbon stored by mangroves in its soil.

They found that blue carbon has been underestimated by up to 50 percent in coasts with limestone rock, such as those found on the southern tip of Florida and in the Caribbean. They also found that blue carbon has been overestimated by up to 86 percent in coastal deltas in previous studies. In addition, this study provides new estimates for about 57 countries that lack blue carbon data.

"We have developed a roadmap for ecological investigations on the global scale, highlighting that there may be patterns that govern how mangroves store carbon from the atmosphere," said co-author Andre Rovai, who is a postdoctoral researcher in the LSU College of the Coast & Environment's Department of Oceanography & Coastal Sciences.

Having this roadmap is critical given how fast development and land-use changes are occurring around the world. The scientists hope that planners will become more aware of the environmental value of their country's mangroves and take it into account before losing these ecologically important resources.
-end-
Funding support for this work was provided by the National Science Foundation Coastal SEES program, Frontiers of Earth Surface Dynamics, the Louisiana Sea Grant College Program and CAPES/CNPq Science without Borders.

Twilley will also give the opening plenary talk at the Ecological Society of America annual meeting on Sunday, Aug. 5, at 5 p.m. (CDT). His talk will be live streamed. He will also be presenting his research, The resilience of coastal deltaic floodplains, on Thursday, Aug. 9, at 10:10 a.m.

Additional Links:

Coastal morphology explains global blue carbon distributions, Frontiers in Ecology and the Environment: https://esajournals.onlinelibrary.wiley.com/journal/15409309

[doi: 10.1002/fee.1937]

Live stream to Ecological Society of America opening plenary talk titled "Ecosystem design approaches in a highly engineered landscape of the Mississippi River Delta" by Robert Twilley: https://www.youtube.com/watch?v=tN5U_pd4ZBY

Louisiana State University

Related Greenhouse Gases Articles from Brightsurf:

Mitigation of greenhouse gases in dairy cattle through genetic selection
Researchers in Spain propose mitigating methane production by dairy cattle through breeding.

Researchers control cattle microbiomes to reduce methane and greenhouse gases
''Now that we know we can influence the microbiome development, we can use this knowledge to modulate microbiome composition to lower the environmental impact of methane from cows by guiding them to our desired outcomes,'' Ben-Gurion University of the Negev Prof Mizrahi says.

A new look into the sources and impacts of greenhouse gases in China
Special issue of Advances in Atmospheric Sciences reveals new findings on China's GHG emissions and documents changes in local and regional environments.

New catalyst recycles greenhouse gases into fuel and hydrogen gas
Scientists have taken a major step toward a circular carbon economy by developing a long-lasting, economical catalyst that recycles greenhouse gases into ingredients that can be used in fuel, hydrogen gas, and other chemicals.

Making microbes that transform greenhouse gases
A new technique will help not only reduce greenhouse gas emissions, but the potential to reduce the overall dependence on petroleum.

Reducing greenhouse gases while balancing demand for meat
Humans' love for meat could be hurting the planet. Many of the steps involved in the meat supply chain result in greenhouse gas emissions.

White people's eating habits produce most greenhouse gases
White individuals disproportionately affect the environment through their eating habits by eating more foods that require more water and release more greenhouse gases through their production compared to foods black and Latinx individuals eat, according to a new report published in the Journal of Industrial Ecology.

Degrading plastics revealed as source of greenhouse gases
Researchers from the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology (SOEST) discovered that several greenhouse gases are emitted as common plastics degrade in the environment.

What natural greenhouse gases from wetlands and permafrosts mean for Paris Agreement goals
Global fossil fuel emissions would have to be reduced by as much as 20 percent more than previous estimates to achieve the Paris Agreement targets, because of natural greenhouse gas emissions from wetlands and permafrost, new research has found.

Greenhouse gases were the main driver of climate change in the deep past
Greenhouse gases were the main driver of climate throughout the warmest period of the past 66 million years, providing insight into the drivers behind long-term climate change.

Read More: Greenhouse Gases News and Greenhouse Gases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.