Nav: Home

Trading farmland for nitrogen protection

August 03, 2016

Excess nitrogen from agricultural runoff can enter surface waters with devastating effects. Algal blooms and fish kills are a just a couple of possible consequences. But riparian buffer zones - areas of grasses, perennials, or trees - between farmlands and streams or rivers can help.

"Riparian buffer zones are nature's hydraulic shock absorbers," says Deanna Osmond, a soil scientist at North Carolina State University. They can reduce pollution and provide habitat for wildlife. Trees can hold stream banks together and provide food for animals. These buffer zones can also dampen the flow of agricultural runoff. This can lead to lower amounts of nitrogen reaching streams and rivers.

But what kind of vegetation makes buffer zones most efficient at removing nitrogen from runoff? That is the question that Osmond and her colleagues set out to answer.

Their recent study showed that - at least for some areas - it doesn't matter what kind of vegetation buffer zones are made up of. There appeared to be no significant differences in how efficiently they removed nitrogen from agricultural runoff.

Irrespective of vegetation type, wider buffer zones were more effective than narrower ones. It is important to consider the width of buffers, says Osmond. "There is a trade-off between productive farmlands and buffer zones." Farmers cannot grow crops in buffer zones.

Previous studies had typically involved buffer zones measuring at least 30 meters wide. The buffers in this study were either 15 or eight meters wide. But even these narrower buffer zones lowered the amount of nitrogen reaching streams. The 15-meter wide buffers were often more than twice as efficient at removing nitrogen from runoff compared to the eight-meter wide ones.

There are a number of ways buffer zones can reduce the amount of nitrogen reaching water sources. Nitrogen in agricultural runoff is usually present as nitrates. Nitrates can be taken up by plants in buffer zones or soil microbes can transform nitrates into the atmosphere as nitrogen gas.

Some previous studies had found that certain vegetation types are more effective at nitrogen removal. That could be because of differences in soil conditions and stream flow. "Location matters when studying riparian buffer zones," says Osmond.

For example, the majority of previous studies were in areas where streams are more connected to their floodplains. The increased connectivity leads to a higher groundwater table. In areas where the water table is high, nitrates are transformed more efficiently to nitrogen gas.

This study was conducted in the upper coastal plains of North Carolina where the streams were not connected to their floodplains. That could have affected how efficiently the different vegetation types removed nitrogen from runoff.

Also, the microbes need carbon to eat and live. The process is most efficient when levels of dissolved organic carbon in the soil are high. At all the measurement sites in this study, the dissolved organic carbon levels were low. That may have limited the amount of nitrates being removed from runoff and equalized differences between different vegetation types.

Finally, while many studies measure the effectiveness of preexisting buffer zones, "We started from scratch," says Osmond. That's important as it more closely reflects the reality in many farms where buffer zones are not preexisting. Osmond's study also tracked the buffer zones for 12 years, far longer than most other studies. The longer time-span could also help explain why these results are different from some previous studies.

"Many factors affect how efficiently riparian buffer zones remove nitrogen from runoff," says Osmond. Studies in different regions can help us better understand those factors.

Read more about Osmond's study in the Journal of Environmental Quality.
-end-


American Society of Agronomy

Related Nitrogen Articles:

Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.
Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.
We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.
How nitrogen-fixing bacteria sense iron
New research reveals how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.
Corals take control of nitrogen recycling
Corals use sugar from their symbiotic algal partners to control them by recycling nitrogen from their own ammonium waste.
Foraging for nitrogen
As sessile organisms, plants rely on their ability to adapt the development and growth of their roots in response to changing nutrient conditions.
Inert nitrogen forced to react with itself
Direct coupling of two molecules of nitrogen: chemists from Würzburg and Frankfurt have achieved what was thought to be impossible.
Researchers discover new nitrogen source in Arctic
Scientists have revealed that the partnership between an alga and bacteria is making the essential element nitrogen newly available in the Arctic Ocean.
Scientists reveal impacts of anthropogenic nitrogen discharge on nitrogen transport in global rivers
Scientists found that riverine dissolved inorganic nitrogen in the USA has increased primarily due to the use of nitrogen fertilizers.
Nitrogen gets in the fast lane for chemical synthesis
A new one-step method discovered by synthetic organic chemists at Rice University allows nitrogen atoms to be added to precursor compounds used in the design and manufacture of drugs, pesticides, fertilizers and other products.
More Nitrogen News and Nitrogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.