Nav: Home

Trading farmland for nitrogen protection

August 03, 2016

Excess nitrogen from agricultural runoff can enter surface waters with devastating effects. Algal blooms and fish kills are a just a couple of possible consequences. But riparian buffer zones - areas of grasses, perennials, or trees - between farmlands and streams or rivers can help.

"Riparian buffer zones are nature's hydraulic shock absorbers," says Deanna Osmond, a soil scientist at North Carolina State University. They can reduce pollution and provide habitat for wildlife. Trees can hold stream banks together and provide food for animals. These buffer zones can also dampen the flow of agricultural runoff. This can lead to lower amounts of nitrogen reaching streams and rivers.

But what kind of vegetation makes buffer zones most efficient at removing nitrogen from runoff? That is the question that Osmond and her colleagues set out to answer.

Their recent study showed that - at least for some areas - it doesn't matter what kind of vegetation buffer zones are made up of. There appeared to be no significant differences in how efficiently they removed nitrogen from agricultural runoff.

Irrespective of vegetation type, wider buffer zones were more effective than narrower ones. It is important to consider the width of buffers, says Osmond. "There is a trade-off between productive farmlands and buffer zones." Farmers cannot grow crops in buffer zones.

Previous studies had typically involved buffer zones measuring at least 30 meters wide. The buffers in this study were either 15 or eight meters wide. But even these narrower buffer zones lowered the amount of nitrogen reaching streams. The 15-meter wide buffers were often more than twice as efficient at removing nitrogen from runoff compared to the eight-meter wide ones.

There are a number of ways buffer zones can reduce the amount of nitrogen reaching water sources. Nitrogen in agricultural runoff is usually present as nitrates. Nitrates can be taken up by plants in buffer zones or soil microbes can transform nitrates into the atmosphere as nitrogen gas.

Some previous studies had found that certain vegetation types are more effective at nitrogen removal. That could be because of differences in soil conditions and stream flow. "Location matters when studying riparian buffer zones," says Osmond.

For example, the majority of previous studies were in areas where streams are more connected to their floodplains. The increased connectivity leads to a higher groundwater table. In areas where the water table is high, nitrates are transformed more efficiently to nitrogen gas.

This study was conducted in the upper coastal plains of North Carolina where the streams were not connected to their floodplains. That could have affected how efficiently the different vegetation types removed nitrogen from runoff.

Also, the microbes need carbon to eat and live. The process is most efficient when levels of dissolved organic carbon in the soil are high. At all the measurement sites in this study, the dissolved organic carbon levels were low. That may have limited the amount of nitrates being removed from runoff and equalized differences between different vegetation types.

Finally, while many studies measure the effectiveness of preexisting buffer zones, "We started from scratch," says Osmond. That's important as it more closely reflects the reality in many farms where buffer zones are not preexisting. Osmond's study also tracked the buffer zones for 12 years, far longer than most other studies. The longer time-span could also help explain why these results are different from some previous studies.

"Many factors affect how efficiently riparian buffer zones remove nitrogen from runoff," says Osmond. Studies in different regions can help us better understand those factors.

Read more about Osmond's study in the Journal of Environmental Quality.
-end-


American Society of Agronomy

Related Nitrogen Articles:

Fixing the role of nitrogen in coral bleaching
A unique investigation highlights how excess nitrogen can trigger coral bleaching in the absence of heat stress.
Universities release results on nitrogen footprints
Researchers have developed a large-scale method for calculating the nitrogen footprint of a university in the pursuit of reducing nitrogen pollution, which is linked to a cascade of negative impacts on the environment and human health, such as biodiversity loss, climate change, and smog.
A battery prototype powered by atmospheric nitrogen
As the most abundant gas in Earth's atmosphere, nitrogen has been an attractive option as a source of renewable energy.
Northern lakes respond differently to nitrogen deposition
Nitrogen deposition caused by human activities can lead to an increased phytoplankton production in boreal lakes.
Researchers discover greenhouse bypass for nitrogen
An international team discovers that production of a potent greenhouse gas can be bypassed as soil nitrogen breaks down into unreactive atmospheric N2.
Bacterial mechanism converts nitrogen to greenhouse gas
Cornell University researchers have discovered a biological mechanism that helps convert nitrogen-based fertilizer into nitrous oxide, an ozone-depleting greenhouse gas.
Going against the grain -- nitrogen turns out to be hypersociable!
Nitrogen is everywhere: even in the air there is four times as much of it as oxygen.
Soybean nitrogen breakthrough could help feed the world
Washington State University biologist Mechthild Tegeder has developed a way to dramatically increase the yield and quality of soybeans.
Trading farmland for nitrogen protection
Excess nitrogen from agricultural runoff can enter surface waters with devastating effects.
Measure of age in soil nitrogen could help precision agriculture
What's good for crops is not always good for the environment.

Related Nitrogen Reading:

Nitrogen (Exploring the Elements)
by Clara MacCarald (Author)

The Nitrogen Cycle (Earth's Cycles in Action)
by Diane Dakers (Author)

The Story of N: A Social History of the Nitrogen Cycle and the Challenge of Sustainability (Studies in Modern Science, Technology, a)
by Hugh S. Gorman (Author)

Nitrogen (Elements)
by John Farndon (br (Author)

Nitrogen Fix

The Story of Nitrogen (First Book)
by Karen Fitzgerald (Author)

The Nitrogen Cycle (Let's Find Out!)
by Bobi Martin (Author)

Nitrogen: Summary and Practicals

Nitrogen Isotope Techniques (Isotopic Techniques in Plant, Soil, and Aquatic Biology) (v. 1)
by Roger Knowles (Editor), Henry Blackburn (Editor), Eldor A. Paul (Editor), Jerry Melillo (Editor)

The World of Nitrogen
by Isaac Asimov (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Hacking The Law
We have a vision of justice as blind, impartial, and fair — but in reality, the law often fails those who need it most. This hour, TED speakers explore radical ways to change the legal system. Guests include lawyer and social justice advocate Robin Steinberg, animal rights lawyer Steven Wise, political activist Brett Hennig, and lawyer and social entrepreneur Vivek Maru.
Now Playing: Science for the People

#495 Earth Science in Space
Some worlds are made of sand. Some are made of water. Some are even made of salt. In science fiction and fantasy, planet can be made of whatever you want. But what does that mean for how the planets themselves work? When in doubt, throw an asteroid at it. This is a live show recorded at the 2018 Dragon Con in Atlanta Georgia. Featuring Travor Valle, Mika McKinnon, David Moscato, Scott Harris, and moderated by our own Bethany Brookshire. Note: The sound isn't as good as we'd hoped but we love the guests and the conversation and we wanted to...