Nav: Home

Better contrast agents based on nanoparticles

August 03, 2016

Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging. This new type of nanoparticles produce around ten times more contrast than the actual contrast agents and are responsive to specific environments. The journal Chemical Communications has published these results.

Contrast agents enhance the imaging of tissues obtained by magnetic resonance imaging (MRI). Whilst the detection of structural details in the body can be significantly improved by using contrast agents, current substances produce insufficient contrast for the detection of the early stages of diseases. Another limitation is that current contrast agents do not sense their biochemical environments. Researchers from the Department of Chemistry at the University of Basel have developed nanoparticles, which can serve as "smart" contrast agents for MRI.

Contrast agents are usually based on the metal Gadolinium, which is injected and serves for an improved imaging of various organs in an MRI. Gadolinium ions should be bound with a carrier compound to avoid the toxicity to the human body of the free ions. Therefore, highly efficient contrast agents requiring lower Gadolinium concentrations represent an important step for advancing diagnosis and improving patient health prognosis.

Smart nanoparticles as contrast agents

The research groups of Prof. Cornelia Palivan and Prof. Wolfgang Meier from the Department of Chemistry at the University of Basel have introduced a new type of nanoparticles, which combine multiple properties required for contrast agents: an increased MRI contrast for lower concentration, a potential for long blood circulation and responsiveness to different biochemical environments. These nanoparticles were obtained by co-assembly of heparin-functionalized polymers with trapped gadolinium ions and stimuli-responsive peptides.

The study shows, that the nanoparticles have the capacity of enhancing the MRI signal tenfold higher than the current agents. In addition, they have an enhanced efficacy in reductive milieu, characteristic for specific regions, such as cancerous tissues. These nanoparticles fulfill numerous key criteria for further development, such as absence of cellular toxicity, no apparent anticoagulation property, and high shelf stability. The concept developed by the researchers at the University of Basel to produce better contrast agents based on nanoparticles highlights a new direction in the design of MRI contrast agents, and supports their implementation for future applications.

-end-



University of Basel

Related Nanoparticles Articles:

Chemists perform surgery on nanoparticles
A team of chemists led by Carnegie Mellon's Rongchao Jin has for the first time conducted site-specific surgery on a nanoparticle.
Nanoparticles remain unpredictable
The way that nanoparticles behave in the environment is extremely complex.
Gold standards for nanoparticles
KAUST researchers reveal how small organic 'citrate' ions can stabilize gold nanoparticles, assisting research on the structures' potential.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
Nanoparticles hitchhiking their way along strands of hair
In shampoo ads, hair always looks like a shiny, smooth surface.
Better contrast agents based on nanoparticles
Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging.
Gentle cancer treatment using nanoparticles works
Cancer treatments based on laser irridation of tiny nanoparticles that are injected directly into the cancer tumor are working and can destroy the cancer from within.
Radiation-guided nanoparticles zero in on metastatic cancer
Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle.
Nanoparticles can grow in cubic shape
Use of nanoparticles in many applications, e.g. for catalysis, relies on the surface area of the particles.
Nanoparticles deliver anticancer cluster bombs
Scientists have devised a triple-stage 'cluster bomb' system for delivering the chemotherapy drug cisplatin, via tiny nanoparticles designed to break up when they reach a tumor.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?  Through newly unearthed archival tape, we hear Sipple himself grapple with some of the most vexing topics of his day and ours - privacy, identity, the freedom of the press - not to mention the bonds of family and friendship.  Reported by Latif Nasser and Tracie Hunte. Produced by Matt Kielty, Annie McEwen, Latif Nasser and Tracie Hunte. Special thanks to Jerry Pritikin, Michael Yamashita, Stan Smith, Duffy Jennings; Ann Dolan, Megan Filly and Ginale Harris at the Superior Court of San Francisco; Leah Gracik, Karyn Hunt, Jesse Hamlin, The San Francisco Bay Area Television Archive, Mike Amico, Jennifer Vanasco and Joey Plaster. Support Radiolab today at Radiolab.org/donate.
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.