Nav: Home

Massive MIMO, massive win for Bristol student at NI Engineering Impact Awards

August 03, 2016

A postgraduate student from the University of Bristol is the joint recipient of five separate awards in recognition of their world record achievement in 5G wireless spectrum efficiency using Massive MIMO. The announcement was made at the 22nd annual NIWeek conference in Austin, Texas, USA, at the National Instruments (NI) Engineering Impact Awards ceremony last night.

Paul Harris, from the University's EPSRC Centre for Doctoral Training (CDT) in Communications together with Steffen Malkowsky, from the University of Lund in Sweden, won NI's Wireless and Mobile Communications category together with NI's Engineering Grand Challenges Award, Hewlett Packard Enterprise (HPE) Edgeline Big Analog Data Award, Powered by Xilinx Award, and the 2016 Customer Application of the Year Award.

In the 2016 NI Engineering Impact Awards - an annual set of awards that showcase extraordinary and innovative projects - over 100 entries were submitted, which were narrowed down to 14 finalists in seven specialisations. From these shortlists the winner was selected in each individual category. A further nine additional awards were presented, including NI Global Student Design Showcase, NI Community's Choice, HPE Edgeline Big Analog Data, Intel Internet of Things, Powered by Xilinx, Engineering Grand Challenges, Humanitarian, Innovations in STEM and the 2016 Customer Application of the Year.

Paul and Steffen used a 128-antenna massive MIMO testbed to demonstrate simultaneous real-time wireless connectivity to multiple users in the same radio channel through a technique known as spatial multiplexing. In their April submission they described how 12 users could be simultaneously connected using a single 20MHz channel at 3.5GHz. They achieved an aggregate data rate of 1.59 Gbps and set a new world record in wireless spectrum efficiency of 79.4bit/s/Hz.

In May, Bristol and Lund supported 22 simultaneous users and smashed through the 100 bit/s/Hz barrier; eventually setting a new world record of 145.6 bit/s/Hz.

The research team's achievement with massive MIMO arrays, which are cellular base stations with more than 100 antennas, demonstrates that this technology could deliver ultra-fast data rates to high densities of smartphones and tablets. Massive MIMO is a key technology for 5G, the next generation of wireless access.

The hardware behind this demonstration was provided to the University as part of Bristol Is Open, a joint venture with Bristol City Council that aims to become the world's first Open Programmable City. The team used a NI flexible prototyping platform based on LabVIEW system design software and PXI hardware.

Spectrum and power efficient wireless communications are core to the University of Bristol's Communication Systems & Networks (CSN) Research Group as well as the EPSRC CDT in Communications and the Department of Electrical and Information Technology at Lund University.

Mark Beach, Professor of Radio Systems Engineering in the Department of Electrical and Electronic Engineering and Manager of the EPSRC Centre for Doctoral Training (CDT) in Communications, said: "We're justifiably proud of Paul and Steffen and these awards truly exemplifies both their technical contributions to the field of Massive MIMO 5G wireless spectral efficiency and our collaborations with European universities and the NI engineering team in the US."

Today [Wednesday 3 August], as part of the NIWeek conference, Professor Andrew Nix, Dean of Engineering and Head of the CSN research group, took to the NI stage as part of a keynote presentation entitled '5G: What's the Big Deal?' This event attracted more than 3,200 innovators, with thousands more watching around the world on a live stream.

Professor Andrew Nix said: "The demands for mobile data are increasing exponentially and operators are struggling to keep up. In the sub 6GHz bands, Massive MIMO is the 5G technology of choice. By breaking the work spectral efficiency record twice, compared to 4G we've managed to demonstrate an order of magnitude increase in spectral efficiency."

As part of the NI 5G summit, Professor Mark Beach participated in an IEEE Communications Society panel session entitled ''How will record-setting spectral efficiency impact real 5G systems?' Mark spoke along with fellow international experts in the field showcasing Bristol's on-going contributions to international 5G R&D.
-end-


University of Bristol

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".