Nav: Home

Magnetic atoms arranged in neat rows

August 03, 2016

Physicists at Friedrich-Alexander Universität Erlangen-Nürnberg and the Vienna University of Technology have successfully created one-dimensional magnetic atom chains for the first time. Their break-through provides a model system for basic research in areas such as magnetic data storage, as well as in chemistry. Their results were recently published in the renowned journal Physical Review Letters.

Nanotechnology is revolutionising the way we live by making microelectronic systems even smaller, enabling new developments in diagnosis and treatment in medicine, and giving the surfaces of materials new self-cleaning properties - to name just a few examples. Nanostructures' unique properties are partly due to the fact that the dimensionality of the materials is limited - such as by only allowing a crystal to grow in two directions or even just one direction instead of three. In essence, 'one dimensional' means arranging atoms in a chain. 'However, an atom chain cannot exist in empty space but must be placed on a substrate,' explains Prof. Dr. Alexander Schneider from FAU's Chair of Solid-State Physics. 'Doing this can cause the desired properties - magnetism in our case - to disappear again. Developing an understanding of these low-dimensional systems is a key research priority, as they are increasingly dominating the properties of magnetic data storage.'

Oxygen allows one-dimensional atom chains to form

Professor Schneider's team collaborated with the working groups led by Prof. Dr. Klaus Heinz, also from the Chair of Solid-State Physics, and Prof. Dr. Josef Redinger from the Center for Computational Materials Science at the Vienna University of Technology. Together they were able to demonstrate that oxygen enables perfect single-atom chains to grow from manganese, iron, cobalt and nickel on an iridium surface. 'Evaporating metals onto a metallic surface in a vacuum is a common procedure,' Alexander Schneider says. 'However, this often produces a two-dimensional layer of metal. For the first time, with the help of oxygen, we have managed to produce atom chains that cover the entire iridium surface, are arranged with a regular distance of 0.8 nanometres between each atom and can be up to 500 atoms long, without a single structural fault. This all happens through self assembly, i.e. the chains form without any external help.'

The physicists discovered that the oxygen atoms work like a kind of lifting mechanism that separates the atom chains from the iridium substrate. This gives the chains their one-dimensional character and their magnetic properties. The calculations made by the working group in Vienna showed that the magnetism of the metals changes in the one-dimensional structure: nickel becomes non-magnetic, cobalt remains ferromagnetic, and iron and manganese become antiferromagnetic, which means that the magnetisation direction changes with each atom. 'What is unique about our process is that, as well as allowing perfect chains of individual materials to grow, it enables chains of alternating metal atoms to form,' Alexander Schneider explains. 'This means that we can create mixed systems in which ferromagnetic sections of chains can be separated from antiferromagnetic or non-magnetic sections, for example.'

Potential for new developments in basic research

The discovery of the self-assembling system of perfectly organised magnetic atom chains could lead to new developments in basic research on one-dimensional systems. In particular, further research into a system of pieces of chains with different lengths and magnetic properties will reveal which effects can be expected for increasing miniaturisation in data storage. Another interesting aspect of the material system that the researchers studied is that, due to the oxygen built into the chains, the properties of the chains are a cross between those of a one-dimensional metal and an oxide. The perfect lateral arrangement of the chains which is preserved over long distances means that research methods that cannot be applied on the atomic scale can be used to study aspects of the atom chains such as their catalytic properties.

University of Erlangen-Nuremberg

Related Data Storage Articles:

Life data economics: calling for new models to assess the value of human data
After the collapse of the blockchain bubble a number of research organisations are developing platforms to enable individual ownership of life data and establish the data valuation and pricing models.
Geoscience data group urges all scientific disciplines to make data open and accessible
Institutions, science funders, data repositories, publishers, researchers and scientific societies from all scientific disciplines must work together to ensure all scientific data are easy to find, access and use, according to a new commentary in Nature by members of the Enabling FAIR Data Steering Committee.
Research overcomes key obstacles to scaling up DNA data storage
Researchers have developed new techniques for labeling and retrieving data files in DNA-based information storage systems, addressing two of the key obstacles to widespread adoption of DNA data storage technologies.
Discovery may lead to new materials for next-generation data storage
Research funded in part by the US Army identified properties in materials that could one day lead to applications such as more powerful data storage devices that continue to hold information even after a device has been powered off.
Electric skyrmions charge ahead for next-generation data storage
A team of researchers led by Berkeley Lab has observed chirality for the first time in polar skyrmions, in a material with reversible electrical properties -- a combination that could lead to more powerful data storage devices that continue to hold information, even after they've been turned off.
Advance boosts efficiency of flash storage in data centers
New architecture promises to cut in half the energy and physical space required to store and manage user data.
Skyrmions could provide next generation data storage
Scientists at the Universities of Birmingham, Bristol and Colorado, Boulder have moved a step closer to developing the next generation of data storage and processing devices, using an emerging science called skyrmionics.
New optical memory cell achieves record data-storage density
Researchers have demonstrated a new technique that can store more optical data in a smaller space than was previously possible on-chip.
Data storage using individual molecules
Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled.
Making steps toward improved data storage
Researchers created the world's most powerful electromagnetic pulses to control a data-storage material's physical form, leading to a potential way to scale down memory devices and revolutionize how computers handle information.
More Data Storage News and Data Storage Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.