Nav: Home

The biology of color

August 03, 2017

Scientists are on a threshold of a new era of color science due largely to an explosion of technologies, but key questions remain for the field, according to a study in the journal Science by an international team of researchers led by Tim Caro of the University of California, Davis.

While studies have long used color as a factor for understanding evolution, only recently have visual physiologists, sensory and behavioral ecologists, evolutionary biologists and anthropologists come together to study how color is produced and perceived by animals and its function and patterns of evolution. With this wide-ranging synthesis, "The Biology of Color," such a multidisciplinary group provides a roadmap of advances in the field of animal coloration, as well as remaining challenges.

"In the past 20 years, the field of animal coloration research has been propelled forward very rapidly by technological advances," said corresponding author Tim Caro, a professor in the UC Davis Department of Wildlife, Fish and Conservation Biology. "These include digital imaging, innovative laboratory and field studies and large-scale comparative analyses, each of which are allowing completely new questions to be asked."

Coloration is a complicated biological trait. Animals use it for camouflage, to send warning signals, attract mates, send social signals, regulate their body temperature and thwart pests, among other uses.

Caro's own research has helped clarify long-held mysteries about animal coloration. This includes why zebras have black and white stripes (to avoid biting flies) and why pandas are black and white (to camouflage in both snow and dark forests, since they need to eat year-round).

Among the advances, the study notes that scientists now recognize that other animals see the world differently from humans. Researchers now understand the mechanisms underlying color production, and color measurements collected at a geographic scale are shedding light on the dynamics of evolutionary processes.

For instance, scientists can now pose questions about the evolution of camouflage based on what a prey's main predator can see. They also see how gene changes underlying color production have parallels across unrelated species. Such research can contribute to advances in medicine, security, clothing and the military.

Challenges include learning how color is integrated with other sensory information. For instance, how a swallowtail butterfly responds to color can change depending on how its host plant smells. Additional challenges include a better understanding of the neural mechanisms by which color influences behavior, and creating techniques to better analyze the role of color in animal patterns and motion.

A workshop where the study's ideas were formulated was funded by the Institute of Advanced Study in Berlin (Wissenschaftskolleg zu Berlin.)
-end-


University of California - Davis

Related Evolution Articles:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Biology Of Sex
Original broadcast date: May 8, 2020. Many of us were taught biological sex is a question of female or male, XX or XY ... but it's far more complicated. This hour, TED speakers explore what determines our sex. Guests on the show include artist Emily Quinn, journalist Molly Webster, neuroscientist Lisa Mosconi, and structural biologist Karissa Sanbonmatsu.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

The Wubi Effect
When we think of China today, we think of a technological superpower. From Huweai and 5G to TikTok and viral social media, China is stride for stride with the United States in the world of computing. However, China's technological renaissance almost didn't happen. And for one very basic reason: The Chinese language, with its 70,000 plus characters, couldn't fit on a keyboard.  Today, we tell the story of Professor Wang Yongmin, a hard headed computer programmer who solved this puzzle and laid the foundation for the China we know today. This episode was reported and produced by Simon Adler with reporting assistance from Yang Yang. Special thanks to Martin Howard. You can view his renowned collection of typewriters at: antiquetypewriters.com Support Radiolab today at Radiolab.org/donate.