Nav: Home

The biology of color

August 03, 2017

Scientists are on a threshold of a new era of color science due largely to an explosion of technologies, but key questions remain for the field, according to a study in the journal Science by an international team of researchers led by Tim Caro of the University of California, Davis.

While studies have long used color as a factor for understanding evolution, only recently have visual physiologists, sensory and behavioral ecologists, evolutionary biologists and anthropologists come together to study how color is produced and perceived by animals and its function and patterns of evolution. With this wide-ranging synthesis, "The Biology of Color," such a multidisciplinary group provides a roadmap of advances in the field of animal coloration, as well as remaining challenges.

"In the past 20 years, the field of animal coloration research has been propelled forward very rapidly by technological advances," said corresponding author Tim Caro, a professor in the UC Davis Department of Wildlife, Fish and Conservation Biology. "These include digital imaging, innovative laboratory and field studies and large-scale comparative analyses, each of which are allowing completely new questions to be asked."

Coloration is a complicated biological trait. Animals use it for camouflage, to send warning signals, attract mates, send social signals, regulate their body temperature and thwart pests, among other uses.

Caro's own research has helped clarify long-held mysteries about animal coloration. This includes why zebras have black and white stripes (to avoid biting flies) and why pandas are black and white (to camouflage in both snow and dark forests, since they need to eat year-round).

Among the advances, the study notes that scientists now recognize that other animals see the world differently from humans. Researchers now understand the mechanisms underlying color production, and color measurements collected at a geographic scale are shedding light on the dynamics of evolutionary processes.

For instance, scientists can now pose questions about the evolution of camouflage based on what a prey's main predator can see. They also see how gene changes underlying color production have parallels across unrelated species. Such research can contribute to advances in medicine, security, clothing and the military.

Challenges include learning how color is integrated with other sensory information. For instance, how a swallowtail butterfly responds to color can change depending on how its host plant smells. Additional challenges include a better understanding of the neural mechanisms by which color influences behavior, and creating techniques to better analyze the role of color in animal patterns and motion.

A workshop where the study's ideas were formulated was funded by the Institute of Advanced Study in Berlin (Wissenschaftskolleg zu Berlin.)
-end-


University of California - Davis

Related Evolution Articles:

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.
Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.
How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.
Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.