Nav: Home

Monash scientists show that highly lethal viruses hijack cellular defences against cancer

August 03, 2018

Henipaviruses are among the deadliest viruses known to man and have no effective treatments. The viruses include Hendra, lethal to humans and horses, and the Nipah virus, a serious threat in East and Southeast Asia. They are on the World Health Organization Blueprint list of priority diseases needing urgent research and development action.

Now Monash University's Biomedicine Discovery Institute (BDI) researchers have identified a new mechanism used by Henipaviruses in infection, and potential new targets for antivirals to treat them. Their findings may also apply to other dangerous viruses.

The research was published today in Nature Communications.

A collaboration of scientists, led by Monash BDI's Dr Gregory Moseley, found that Henipaviruses hijack a mechanism used by cells to counter DNA damage and prevent harmful mutations, important in diseases such as cancer.

Dr Moseley said it was already known that the viruses send a particular protein into a key part of a cell's nucleus called the nucleolus, but it wasn't known why it did this.

He said the researchers showed that this protein interacted with a cell protein that is an important part of the DNA-damage response machinery, called 'Treacle'. This inhibited Treacle function, which appears to enhance henipavirus production.

(Treacle is, incidentally, involved in a craniofacial disorder called Treacher Collins syndrome, aired in the popular US movie Wonder in 2017.)

"What the virus seems to be doing is imitating part of the DNA damage response," Dr Moseley said.

"It is using a mechanism your cells have to protect you against things like ageing and mutations that lead to cancer. This appears to make the cell a better place for the virus to prosper," he said.

According to Dr Moseley, it is possible that blocking the virus from doing this may lead to the development of new anti-viral therapies.

Both Hendra and Nipah, which spread from bats to other animals and humans, emerged in the 1990s; Hendra in an outbreak in Brisbane in 1994 and Nipah in Malaysia in 1998. The viruses, which share outcomes including inflammation of the brain and severe respiratory symptoms, have since caused multiple outbreaks of disease. Nipah has killed several hundred people, including at least 17 people in the Indian state of Kerala in June.

"Nipah is not so important in Australia but it's the one people are concerned about internationally," Dr Moseley said.

"Like Ebola, if you get a really big outbreak and it's not containable, it could be disastrous," he said.

He said the study's findings add insights into how viruses behave more generally.

"We identified a new way that viruses change the cell, by using the very same machinery that the cell normally uses to protect itself from diseases like cancer," he said.

"This seems to be heading towards exciting possibilities about what viruses might be doing," joint first author, Dr Stephen Rawlinson said.

"We are now trying to work out exactly how changing the DNA damage response through Treacle is useful to this and other dangerous viruses," he said.
-end-
PhD student Tianyue Zhao was the other first co-author.

The multidisciplinary collaboration working on the paper included scientists from Monash University's Department of Microbiology, physical chemists using a super-resolution microscope in the Monash University School of Chemistry, the CSIRO AAHL high biocontainment facility, and the University of Melbourne.

The research was supported by the Australian Research Council and the Australian National Health and Medical Research Council.

Read the full paper in Nature Communications titled Viral regulation of host cell biology by hijacking of the nucleolar DNA-damage response.

About the Monash Biomedicine Discovery Institute

Committed to making the discoveries that will relieve the future burden of disease, the newly established Monash Biomedicine Discovery Institute at Monash University brings together more than 120 internationally-renowned research teams. Our researchers are supported by world-class technology and infrastructure, and partner with industry, clinicians and researchers internationally to enhance lives through discovery.

Monash University

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".