Reading the motor intention from brain activity within 100ms

August 03, 2018

A collaborative study by researchers at Tokyo Institute of Technology has developed a new technique to decode motor intention of humans from Electroencephalography (EEG). This technique is motivated by the well documented ability of the brain to predict sensory outcomes of self-generated and imagined actions utilizing so called forward models. The method enabled for the first time, nearly 90% single trial decoding accuracy across tested subjects, within 96 ms of the stimulation, with zero user training, and with no additional cognitive load on the users.

The ultimate dream of brain computer interface (BCI) research is to develop an efficient connection between machines and the human brain, such that the machines may be used at will. For example, enabling an amputee to use a robot arm attached to him, just by thinking of it, as if it was his own arm. A big challenge for such a task is the deciphering of a human user's movement intention from his brain activity, while minimizing the user effort. While a plethora of methods have been suggested for this in the last two decades (1-2), they all require large effort in part of the human user- they either require extensive user training, work well with only a section of the users, or need to use a conspicuous stimulus, inducing additional attentional and cognitive loads on the users. In this study, Researchers from Tokyo Institute of Technology (Tokyo Tech), Le Centre national de la recherche scientifique (CNRS-France), AIST and Osaka University propose a new movement intention decoding philosophy and technique that overcomes all these issues while providing equally much better decoding performance.

The fundamental difference between the previous methods and what they propose is in what is decoded. All the previous methods decode what movement a user intends/imagines, either directly (as in the so called active BCI systems) or indirectly, by decoding what he is attending to (like the reactive BCI systems). Here the researchers propose to use a subliminal sensory stimulator with the Electroencephalography (EEG), and decode, not what movement a user intends/imagines, but to decode whether the movement he intends matches (or not) the sensory feedback sent to the user using the stimulator. Their proposal is motivated by the multitude of studies on so called Forward models in the brain; the neural circuitry implicated in predicting sensory outcomes of self-generated movements (3). The sensory prediction errors, between the forward model predictions and the actual sensory signals, are known to be fundamental for our sensory-motor abilities- for haptic perception (4), motor control (5), motor learning (6), and even inter-personal interactions (7-8) and the cognition of self (9). The researchers therefore hypothesized the predictions errors to have a large signature in EEG, and perturbing the prediction errors (using an external sensory stimulator) to be a promising way to decode movement intentions.

This proposal was tested in a binary simulated wheelchair task, in which users thought of turning their wheelchair either left or right. The researchers stimulated the user's vestibular system (as this is the dominant sensory feedback during turning), towards either the left or right direction, subliminally using a galvanic vestibular stimulator. They then decode for the presence of prediction errors (ie. whether or stimulation direction matches the direction the user imagines, or not) and consequently, as the direction of stimulation is known, the direction the user imagines. This procedure provides excellent single trial decoding accuracy (87.2% median) in all tested subjects, and within 96 ms of stimulation. These results were obtained with zero user training and with no additional cognitive load on the users, as the stimulation was subliminal.

This proposal promises to radically change how movement intention is decoded, due to several reasons. Primarily, because the method promises better decoding accuracies with no user training and without inducing additional cognitive loads on the users. Furthermore, the fact that the decoding can be done in less than 100 ms of the stimulation highlights its use for real-time decoding. Finally, this method is distinct from other methods utilizing ERP, ERD and ERN, showing that it can be used in parallel to current methods to improve their accuracy.
-end-


Tokyo Institute of Technology

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.