Nav: Home

Parasite infections with multiple strains are more harmful to vertebrate hosts

August 03, 2018

The incredible amount of genetic diversity in parasites means humans are often infected with multiple strains, which could make infections worse and increase the prevalence of the parasite over time, according to a new study.

Schistosoma mansoni is a water-borne parasite with two hosts: snails and humans. When eggs in excrement from infected humans make their way into bodies of water, they hatch and infect snails, where they multiply. The parasite leaves the snail and enters the water, where it can infect humans by penetrating the skin.

To figure out what factors influence the amount of damage, or virulence, done to either host, Purdue University researchers studied the effects of two strains separately and then together.

"The amount of virulence that occurs when these two strains are together differs depending on which host they're in," explained Dennis Minchella, a professor of biological sciences at Purdue. "In the snail, the nastier strain was suppressed by the dominant competitor, and the overall virulence was lower. But in the mouse, the harsher strain dominates."

Mice with two strains of the parasite, or unrelated infections, fared similarly to those with only the nastier strain, but much worse than those with the weaker strain. The findings were published in the International Journal for Parasitology.

That the vertebrate still fares as bad or worse when two strains of the parasite are present could be bad news for people in Africa, the Middle East and the tropics, where schistosomiasis affects more than 200 million people. The disease is treatable with drugs, but people who live in areas where the parasite is endemic will likely keep getting sick.

Schistosoma mansoni starts to cause problems for humans several weeks after infection, when worms begin to reproduce. Most eggs exit the body, but some get stuck in the liver and intestines, where they cause inflammation. This leads to swelling and an inflated, enlarged abdomen.

To measure virulence, the researchers divided the weight of the liver by the mouse's total body weight. As the liver becomes enlarged due to parasite eggs, more damage is done to the host, and the ratio of liver to total body weight increases.

Kin Selection Theory, which says that virulence will be higher in a host if multiple strains are competing, aligns with these results. But it may be strain characteristics, rather than genetic relatedness, that are the main drivers of the outcomes in unrelated infections.

Of the two strains used in this study, PR and NMRI, NMRI was clearly the stronger competitor. In mice, the unrelated infection was more virulent than PR only infections, but not significantly different from NMRI only infections. Essentially, the tougher strain went on with business as usual, even when joined by another strain of the parasite.

An increase in genetic diversity and the frequency of unrelated parasitic infections could create more harmful infections for humans, while also increasing the longevity of infections in snail hosts. Together, this could increase the overall prevalence of the parasite over time.

"Understanding how hosts and parasites interact is important when it comes to treating and preventing the disease," Minchella said. "These findings might also be relevant in other parasite systems with two hosts."
-end-


Purdue University

Related Genetic Diversity Articles:

Rare genetic disorders: New approach uses RNA in search for genetic triggers
In about half of all patients with rare hereditary disorders, it is still unclear what position of the genome is responsible for their condition.
Major genetic study identifies 12 new genetic variants for ovarian cancer
A genetic trawl through the DNA of almost 100,000 people, including 17,000 patients with the most common type of ovarian cancer, has identified 12 new genetic variants that increase risk of developing the disease and confirmed the association of 18 of the previously published variants.
Use of fetal genetic sequencing increases the detection rate of genetic findings
In a study to be presented Thursday, Jan. 26, in the oral plenary session at 8 a.m.
Diversity without limits
Now, researchers at Temple and Oakland universities have completed a new tree of prokaryotic life calibrated to time, assembled from 11,784 species of bacteria.
Threatened by diversity
Psychologist Brenda Major identifies what may be a key factor in many white Americans' support for Donald Trump.
Genetic diversity crucial to Florida scrub-jay's survival
Legendary conservationist Aldo Leopold once advised: 'To keep every cog and wheel is the first precaution of intelligent tinkering.' For the endangered Florida scrub-jay, new research shows that saving every last grouping among its small and scattered remnant populations is vital to preserving genetic diversity -- and the long-term survival of the species.
Genetic diversity of enzymes alters metabolic individuality
Scientists from Tohoku University's Tohoku Medical Megabank Organization have published research about genetic diversity and metabolome in Scientific Reports.
Expanded prenatal genetic testing may increase detection of carrier status for potentially serious genetic conditions
In an analysis that included nearly 350,000 adults of diverse racial and ethnic background, expanded carrier screening for up to 94 severe or profound conditions may increase the detection of carrier status for a variety of potentially serious genetic conditions compared with current recommendations from professional societies, according to a study appearing in the Aug.
Fix for 3-billion-year-old genetic error could dramatically improve genetic sequencing
Researchers found a fix for a 3-billion-year-old glitch in one of the major carriers of information needed for life, RNA, which until now produced errors when making copies of genetic information.
Genetic diversity important for plant survival when nitrogen inputs increase
Genetic diversity is important for plant species to persist in Northern forests that experience human nitrogen inputs.

Related Genetic Diversity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...