Dingoes have gotten bigger over the last 80 years - and pesticides might be to blame

August 03, 2020

Dingoes have gotten around 6-9 per cent bigger over the past 80 years, new research from UNSW and the University of Sydney shows - but the growth is only happening in areas where poison baiting is used.

The findings, published in the Biological Journal of the Linnean Society over the weekend, compared the sizes of dingoes that lived in three baited regions (Kalgoorlie, Pilbara and pastoral South Australia), with those from an unbaited region that stretched from Northern Territory to South Australia.

The scientists measured the skull size - which is a marker of animal size - of nearly 600 dingo specimens originating from the sites.

"Skulls from the baited regions grew by about four millimetres since poison baiting was introduced," says Michael Letnic, lead author of the paper and professor in conservation biology and ecosystem restoration at UNSW Science.

"This equates to roughly a kilogram in body mass."

While both male and female dingoes grew, female dingoes had the biggest growth spurt: their skulls increased by 4.5 millimetres, which is almost 9 per cent body mass. Male skulls grew by 3.6 millimetres, or 6 per cent body mass.

The question is: why are dingoes in poison-baited areas growing?

"The most likely theory is that dingoes who survive baiting campaigns have less competition for food," says co-author Associate Professor Mathew Crowther from the University of Sydney.

He explains that dingoes' primary prey, kangaroos, have been shown to increase in numbers when dingo populations are suppressed.

"With more food in abundance, dingoes' physical growth is less restricted."

The pesticide sodium fluoroacetate - known as 1080 (pronounced 'ten eighty') - is commonly used across Australia to control dingo and other pest populations.

A flavourless white powder, 1080 is usually stuck into meat baits and left in dingo hotspots, often via helicopter drops. Baiting was rolled out in Kalgoorlie, Pilbara and pastoral South Australia over the 1960s and 70s.

Dingoes from the unbaited region - which included Indigenous-owned lands and conservation reserves - saw no change in body size.

A predictable cycle

This is not the first time a pesticide has been linked to changes in animal bodies.

"Our interventions have consequences - and they're actually quite predictable consequences," says Prof. Letnic.

"Whatever pressures we put on animal populations - be it pesticides or not - there will be side effects."

Scientists usually observe these impacts in invertebrate pests: for example, some insects - like cockroaches - are becoming more resistant to the insecticides used on them.

However, this study is one of the first to show that vertebrates, like dingoes, also change from pesticide use.

"Poison baiting campaigns could be favouring the survival of larger dingoes," says A/Prof. Crowther. "Smaller dingoes need less poison for a lethal dose, so are more likely to be killed by baiting. This leaves the larger dingoes to survive and breed."

As a result of their growing size, the 1080 dose required to kill a dingo in the baited regions has increased since the toxin was introduced.

"The reaction to this finding may be to add more poison to the baits, or to find a new poison," says Prof. Letnic. "But, eventually, the cycle will start again."

Looking for an explanation

The exact mechanisms at play are still unclear - but a greater abundance of food post-baiting and dingoes adapting to the poison are likely the most influential factors.

Other factors that could have potentially led to the dingoes' growth, like climate change or interbreeding with dogs, seem unlikely.

"We only tested dingoes in areas that have very low dog hybridisation rates, making it highly unlikely that dog genetics are contributing to the size growth," says Prof. Letnic. Most dingo-dog hybridisation, he explains, occurs on the east coast of Australia.

The researchers also suggest that - if anything - a warming climate would decrease dingoes' body size, as cooler conditions favour larger animals.

Further studies that use a broader sample of dingoes from across Australia could help better understand the cause of the dingo body change.

In the meantime, the researchers hope to explore other ecological impacts of 1080 baiting.

"Baiting is changing dingoes, so it could be changing other animal populations," says Prof. Letnic.

"Animals respond to human interventions, whether directly or indirectly. The changes could well be adaptive, and we must think about that."

University of New South Wales

Related Pesticide Articles from Brightsurf:

Pesticide deadly to bees now easily detected in honey
A common insecticide that is a major hazard for honeybees is now effectively detected in honey thanks to a simple new method.

Pesticide mixtures a bigger problem than previously thought
New research led by The University of Queensland has provided the first comprehensive analysis of pesticide mixtures in creeks and rivers discharging to the Great Barrier Reef.

Pesticide seed coatings are widespread but underreported
Seed-coated pesticides -- such as neonicotinoids, many of which are highly toxic to both pest and beneficial insects -- are increasingly used in the major field crops, but are underreported, in part, because farmers often do not know what pesticides are on their seeds, according to an international team of researchers.

Pesticide companies leverage regulations for financial gains
Some pesticide companies may put profit ahead of protecting the public from potential harms.

Pesticide exposure may increase heart disease and stroke risk
Occupational exposure to high levels of pesticides may raise the risk of heart disease and stroke, even in generally healthy men.

Biting backfire: Some mosquitoes actually benefit from pesticide application
The common perception that pesticides reduce or eliminate target insect species may not always hold.

Transfer of EU powers leads to silent erosion of UK pesticide regulation
New analysis by the UK Trade Policy Observatory is warning of a significant weakening of enforcement arrangements covering the approval of pesticides as part of legislative changes carried out under the EU Withdrawal Act.

Pesticide exposure causes bumblebee flight to fall short
Bees exposed to a neonicotinoid pesticide fly only a third of the distance that unexposed bees are able to achieve.

Tomato, tomat-oh! -- understanding evolution to reduce pesticide use
Although pesticides are a standard part of crop production, Michigan State University researchers believe pesticide use could be reduced by taking cues from wild plants.

Pesticide cocktail can harm honey bees
A series of tests conducted over several years by scientists at UC San Diego have shown for the first time that Sivanto, developed by Bayer CropScience AG and first registered for commercial use in 2014, could pose a range of threats to honey bees depending on seasonality, bee age and use in combination with common chemicals such as fungicides.

Read More: Pesticide News and Pesticide Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.