Diverse amyloid structures and dynamics revealed by high-speed atomic force microscopy

August 03, 2020

In the human body, proteins sometimes occur in fibrillar aggregates called amyloids. Although certain amyloids are known to have a biological function, amyloid formation is often associated with pathologies, including Alzheimer's and Parkinson's diseases. Understanding how exactly amyloid fibrils form is crucial for gaining insights into the development of such diseases and for advancing with treatment approaches. Now, Takahiro Watanabe-Nakayama from Kanazawa University, Kenjiro Ono from Showa University, and colleagues have investigated the formation process of particular amyloid fibrils using a technique enabling visualization of growth over time. The scientists specifically looked at the effect of cross-seeding ('mixing') different proteins forming aggregates, and found variations in elongation rates and the structures of the fibrils.

The researchers studied alpha-synuclein, a protein abundant in the human brain. They looked at what happened when letting wild-type alpha-synuclein molecules -- the natural, most abundant variant -- form aggregates, and also how aggregation is different when introducing (cross-seeding) mutant variants associated with Parkinson's disease. In addition, the scientists examined the influence of the pH level of the microenvironment in which fibril growth takes place.

By means of high-speed atomic-force microscopy (HS-AFM), Watanabe-Nakayama, Ono and colleagues could record fibril aggregation at nanometer resolution and high video rate for various cases. First, the scientists looked at the growth of single variant types (self-seeding). They found that mutants produced more aggregates, or that they aggregated faster at neutral pH than the wild-type variants. Another observation was that elongation was faster at lower pH (5.8, i.e. acidic) than at higher pH (7.4, i.e. basic).

For cross-seeding, different scenarios can occur. Fibril growth can be accelerated or slowed down, or even stopped. The morphology of the original seed can be preserved, but it also happens that the structure of the resulting fibril is different -- typical structural forms are 'straight' or 'spiral'. The researchers checked that fibril structure and dynamics as observed with HS-AFM correspond to the processes in solution by means of fluorescence experiments; similar conclusions were obtained.

The findings of Watanabe-Nakayama, Ono and colleagues are relevant for better understanding amyloid-related diseases. Quoting the researchers: "Cross-seeding combined with variations in elongation rates has the effect of increasing the structural diversity of the resulting assemblies. This diversity may be reflected in distinct neurotoxic effects for various [protein] assemblies."


Amyloids are fibrillar aggregates of protein molecules. Although some amyloids are known to have a biological function (for example the release of hormones), they are associated with diseases collectively called amyloidoses. These include neurodegenerative disorders like Alzheimer's and Parkinson's diseases. Many different proteins can form amyloids; Takahiro Watanabe-Nakayama from Kanazawa University and colleagues studied fibril formation of alpha-synuclein molecules by means of high-speed atomic force microscopy.

Atomic force microscopy

Atomic force microscopy (AFM) is an imaging technique in which the image is formed by scanning a surface with a very small tip. Horizontal scanning motion of the tip is controlled via piezoelectric elements, while vertical motion is converted into a height profile, resulting in a height distribution of the sample's surface. As the technique does not involve lenses, its resolution is not restricted by the so-called diffraction limit. In a high-speed setup (HS-AFM), the method can be used to produce movies of a sample's structural evolution in real time. Watanabe-Nakayama and colleagues have successfully used HS-AFM to study the formation and structural dynamics of amyloids obtained by self- and cross-seeding alpha-synuclein protein variants.

Kanazawa University

Related Diseases Articles from Brightsurf:

Understanding the spread of infectious diseases
Physicists at M√ľnster University (Germany) have shown in model simulations that the COVID-19 infection rates decrease significantly through social distancing.

Parkinson's disease is not one, but two diseases
Researchers around the world have been puzzled by the different symptoms and varied disease pathways of Parkinson's patients.

New gene implicated in neuron diseases
Healthy NEMF helps the cell recycle garbled protein fragments. But several mutant forms resulted in neuromuscular, neurodegenerative or other ALS-like disease, the scientists found.

Stretching your legs may help prevent diseases such as heart diseases and diabetes
New research published today in The Journal of Physiology shows that 12 weeks of easy-to-administer passive stretching helps improve blood flow by making it easier for your arteries to dilate and decreasing their stiffness.

Not all multiple sclerosis-like diseases are alike
Scientists say some myelin-damaging disorders have a distinctive pathology that groups them into a unique disease entity.

How many rare diseases are there?
Dr. Tudor Oprea says a better method for classifying rare diseases will lead to improved patient care.

A vaccine against chronic inflammatory diseases
In animals, a vaccine modifying the composition and function of the gut microbiota provides protection against the onset of chronic inflammatory bowel diseases and certain metabolic disorders, such as diabetes and obesity.

Ants fight plant diseases
New research from Aarhus University shows that ants inhibit at least 14 different plant diseases.

New, noninvasive test for bowel diseases
Gut diseases such as inflammatory bowel disease (IBD) are increasingly prevalent worldwide, especially in industrialized countries.

What is known -- and not known -- about heart muscle diseases in children
Cardiomyopathies (heart muscle diseases) in children are the focus of a new scientific statement from the American Heart Association that provides insight into the diagnosis and treatment of the diseases as well as identifying future research priorities.

Read More: Diseases News and Diseases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.