Iron-rich meteorites show record of core crystallization in system's oldest planetesimals

August 03, 2020

Washington, DC-- New work led by Carnegie's Peng Ni and Anat Shahar uncovers new details about our Solar System's oldest planetary objects, which broke apart in long-ago collisions to form iron-rich meteorites. Their findings reveal that the distinct chemical signatures of these meteorites can be explained by the process of core crystallization in their parent bodies, deepening our understanding of the geochemistry occurring in the Solar System's youth. They are published by Nature Geoscience.

Many of the meteorites that shot through our planet's atmosphere and crashed on its surface were once part of larger objects that broke up at some point in our Solar System's history. The similarity of their chemical compositions tells scientists that they originated as part of common parent bodies, even if they arrived here centuries apart and in vastly different locations.

Deciphering the geologic processes that shaped these parent bodies could teach us more about our Solar System's history and Earth's formative years. To truly understand what makes our planet capable of sustaining life, and to look for habitable worlds elsewhere, it is crucial to understand its interior--past and present.

"Like our Solar System's rocky planets, these planetesimals accreted from the disk of dust and gas that surrounded our Sun in its youth," explained lead author Ni. "And like on Earth, eventually, the densest material sank toward the center, forming distinct layers."

Iron meteorites were thought to be the remnants of the cores of their ancient, broken-apart parent bodies.

"A history of how their layers differentiated is recorded in their chemical makeup, if we can read it," said Shahar.

There are four stable isotopes of iron. (Each element contains a unique number of protons, but its isotopes have varying numbers of neutrons.) This means that each iron isotope has a slightly different mass than the others. As a result, some isotopes are preferred by certain chemical reactions--which, in turn, affects the proportion of that isotope in the reaction's end products.

The traces of this favoritism can be found in rock samples and can help elucidate the processes that forged these meteorite parent bodies.

Previous research on the ratios of iron isotopes in iron meteorites led to a puzzling observation: compared to the raw material from which their parent bodies were constructed, they are enriched in heavy isotopes of iron.

Together with Nancy Chabot and Caillin Ryan of the Johns Hopkins University Applied Physics Laboratory, Ni and Shahar determined that this enrichment can be explained entirely by the crystallization of a parent object's core.

The researchers use lab-based mimicry to simulate the temperatures of core crystallization in iron meteorite parent bodies. Sophisticated models of the crystallization process including other elemental concentrations--for example, of gold and iridium, as well as isotopes of iron--confirmed their findings.

"This improved understanding of core crystallization adds to our knowledge about our Solar System's formative period," Ni concluded.
This work was funded in part by NASA.

The Carnegie Institution for Science ( is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to