Study reveals less connectivity between hey brain regions in people with FXTAS premutation

August 03, 2020

LAWRENCE -- A new paper in the journal NeuroImage: Clinical from researchers at the University of Kansas reveals a possible early indicator of Fragile X-associated tremor/ataxia syndrome, or FXTAS. The disease afflicts some older people who carry a "premutation" of the gene known as FMR1, which can lead to impairments in movement and cognition -- while other people who carry the premutation are unaffected.

Among people with the FMR1 premutation, scientists have struggled to find biomarkers to indicate who might develop FXTAS.

The new study of 16 people with the FMR1 premutation and 18 healthy controls recorded participants' brain activity with functional magnetic resonance imaging while they performed a test of sensorimotor control. Participants were asked to manipulate images on a screen using a grip-force controller while the fMRI machine recorded the small changes in blood flow that occur when different parts of the brain become more active.

"It's one of the first studies we know about to use fMRI to look at brain system function during motor behavior in a patient population at risk for developing motor deterioration and motor degeneration where they show a loss of balance, increased shaking or tremor as they reach their 50s, 60s or 70s," said Matthew Mosconi, KU associate professor of clinical child psychology and associate scientist at KU's Life Span Institute, who oversaw the investigation in his BRAIN Lab. "But we know very little about which premutation carriers will develop FXTAS. We know males are at greater risk than females. Otherwise, we don't know a whole lot about which premutation carriers are going to get it. And we don't know a whole lot about what's going on in the brain functionally."

The investigators were able to identify brain processes specifically linked to sensorimotor issues in aging people with the FMR1 premutation.

"We found the functional connectivity of cerebellum - a brain region that controls our movement accuracy and timing -- and the extrastriate cortex, a brain area critically involved in processing visual information, is reduced in aging FMR1 premutation carriers," said Walker McKinney, lead author of the new paper and a KU doctoral student in clinical child psychology. "In some people, these longer connections -- like highways between the different parts of the brain -- aren't communicating as efficiently. Each part may be firing, but they're not firing together."

Significantly, the researchers found very little overlap in terms of functional connectivity of this pathway between premutation carriers and healthy controls in the study, suggesting connectivity levels between the cerebellum and extrastriate cortex could serve as an early emerging indicator of FXTAS, or predict who among FMR1 carriers will develop the characteristic symptoms of FXTAS before they develop.

"When studies get reported, oftentimes we're talking about a 'mean difference' between groups -- there's always overlap with healthy people and there's variability there," Mosconi said. "With our study, the fact that there's minimal overlap between premutation carriers and controls suggests that this may be what we would call a biomarker. What we need to do now is follow this measure and these people over time to determine who gets FXTAS and who doesn't. In other words, this seems like a clear target for understanding brain degeneration in FXTAS and identifying it early in its course."
-end-
McKinney and Mosconi's co-authors on the paper were James Bartolotti of KU's Life Span Institute, Dr. Pravin Khemani of the Swedish Neuroscience Institute, and Jun Yi Wang and Randi Hagerman of the University of California-Davis.

Other findings in the paper, which builds on the researchers' previous investigations, include:The work was supported by the Once Upon A Time Foundation and the Kansas Intellectual and Developmental Disabilities Research Center (KIDDRC). A KU GO award is enabling followup research on these findings and biomarkers.

University of Kansas

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.