Improving the accuracy of typhoon forecasts with radar data assimilation

August 03, 2020

Gales and rainstorms brought by landfalling typhoons cause extensive casualties and losses of property every year in many coastal areas of the western Pacific. As such, predicting the track and precipitation of typhoons has always been a top priority of weather forecasting. The structural characteristics of the typhoon and the state of the surrounding environment will directly affect the development trend and track of the typhoon. Therefore, it is of great significance to update and correct the temperature, humidity, wind field, and other information relating to the typhoon and the surrounding area in a timely manner when forecasting typhoons.

Lu Zhang, Xiangjun Tian, and their team with the Institute of Atmospheric Physics at the Chinese Academy of Sciences, analyzed a typical typhoon--Typhoon Haikui (2012)--and used the multigrid NLS-4DVar method without tangent linear and adjoint models to assimilate Doppler radar data.

"We analyzed and discussed the predictions of typhoon structure, track, and precipitation," says Tian, "and we found that after assimilating radar data the intensity of the typhoon was closer to the observations."

According to their study published in Advances in Atmospheric Sciences, after the adjustment and improvement of the typhoon structure, the accuracies of the 12-h track and accumulated precipitation forecasts were significantly improved. In addition, the introduction of the multigrid strategy in the assimilation method also improved the efficiency.

"Our study provides a new assimilation method for the efficient assimilation of a large number of radar data," says Tian. "We hope it will help improve the accuracy of small- and medium-scale weather forecasts in numerical weather forecasting."
-end-
This work was partially supported by the National Key Research and Development Program of China (Grant No. 2016YFA0600203) and the National Natural Science Foundation of China (Grant No. 41575100).

Institute of Atmospheric Physics, Chinese Academy of Sciences

Related Precipitation Articles from Brightsurf:

Convection-permitting modelling improves simulated precipitation over the Tibetan Plateau
A China-UK research team explains the possible reasons for excessive precipitation over the TP in the mesoscale convection-parameterized models.

Spread of monsoon circulation changes explains uncertainty in global land monsoon precipitation projection
A new study emphasizes the importance of reliable prediction of circulation changes, to ensure that future projections of global land monsoon are suitable for use by policy makers.

GMMIP simulations on global monsoon interannual variability show higher skill than historical simulations
GMMIP simulations on global monsoon interannual variability show higher skill than historical simulations.

The spatial consistency of summer rainfall variability between the Mongolian Plateau and North China
The regional differences and similarities of precipitation variability are hotspots in climate change research.

Scientists find key factors impacting sideswiping tropical cyclone precipitation
Scientists find that the distribution of sideswiping tropical cyclones precipitation(STP) includes extreme STP events that appear not only over the island and coastal areas, but also over inland areas

Rainy season tends to begin earlier in Northern Central Asia
The researchers found robust increase of annual mean precipitation at the end of the 21st century under all modelling scenarios over northern central Asia.

Using cloud-precipitation relationship to estimate cloud water path of mature tropical cyclones
Scientists find the cloud water path of mature tropical cyclones can be estimated by a notable sigmoid function of near-surface rain rate.

Precipitation will be essential for plants to counteract global warming
A new Columbia Engineering study shows that increased water stress--higher frequency of drought due to higher temperatures, is going to constrain the phenological cycle: in effect, by shutting down photosynthesis, it will generate a lower carbon uptake at the end of the season, thus contributing to increased global warming.

Fall precipitation predicts abundance of curly top disease and guides weed management
Transmitted by an insect known as the beet leafhopper, curly top disease is a viral disease affecting many crops, including melons, peppers, sugar beets, and tomatoes.

Study confirms climate change impacted Hurricane Florence's precipitation and size
A new modeling framework showed that Hurricane Florence produced more extreme rainfall and was spatially larger due to human-induced climate change.

Read More: Precipitation News and Precipitation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.