Allelic imbalance of chromatin openness is linked to neuropsychiatric disorders

August 03, 2020

A new study led by NorthShore University HealthSystem (NorthShore) and the University of Chicago took a novel approach to identifying SNPs influencing the risk of neuropsychiatric disorders like schizophrenia, bipolar and major depressive disorder, the institutions announced today. The findings, published in the current issue of Science, significantly advance understanding of the genetics of neuropsychiatric disorders and offer a path to translating genetic discoveries into novel disease biology and better clinical treatments.

Current approaches to genome-wide association studies (GWAS) in neuropsychiatry have advanced the identification of many single-base pair changes in the DNA (single nucleotide polymorphisms, or SNPs) associated with an increased risk of developing a psychiatric condition. However, these studies don't necessarily determine which of these SNPs are linked to functional changes in gene expression, and which might actually play a role in the disease.

In this study, the researchers were interested in identifying SNPs that directly affected how readily available DNA is for gene expression (chromatin accessibility). To find these candidates, they first identified SNPs that were heterozygous in their patient samples -- that is, they had one variant of the SNP from their mother and a different copy from their father. SNPs that were differentially accessible were dubbed "allele-specific open chromatin" or ASoC, variants.

The study was led by Jubao Duan, PhD, the Charles R. Walgreen Research Chair and director of functional genomics of psychiatry at NorthShore, who is also an associate professor of psychiatry and behavioral neuroscience at the University of Chicago.

"Much like a mixed jar of peanut butter and plain M&M's that look alike but taste very different, functional disease variants in DNA appear similar and novel approaches are required to identify them," said first author Siwei Zhang, PhD, a research scientist at NorthShore. "Since we can't taste DNA the way we do M&M's, we had to find other ways to separate the functional SNPs from the non-functional. We reasoned that the presence of risk alleles might change the local accessibility of chromatin, and they did."

Investigators used human blood samples to create induced pluripotent stem cells (iPSCs) and turned those iPSCs into different kinds of neuronal cells that model developing human brain cells. They then took a look at chromatin accessibility of DNA sequences in the neurons.

Profiling the ASoC variants identified thousands of potentially functional SNPs, a large fraction of which were associated with changes in the expression of nearby genes. The majority of these ASoC SNPs were found in closed chromatin regions of post-mortem brains, thus highlighting the unique value of using iPSC-derived neurons as a neurodevelopmental cellular model to link a functional SNP to psychiatric disease.

Further analysis demonstrated that these ASoC variants are more likely to be causally linked to a range of neuropsychiatric traits, allowing the researchers to prioritize the study of specific SNPs in genomic regions associated with schizophrenia risk.

"Using ASoC to identify functional SNP has some advantages over other, more conventional approaches," said Xin He, PhD, an assistant professor of human genetics at the University of Chicago, who co-led the computational analysis in the study. "This is because ASoC SNPs likely affect chromatin accessibility directly, while many traditionally identified SNPs associated with gene expression aren't necessarily functional. Compared with potentially functional SNPs identified with other methods, our ASoC SNPs showed much stronger enrichment for psychiatric disease risk variants."

In a proof-of-principle experiment, the scientists were also able to edit the genome of their iPSCs using CRISPR and determined that editing an ASoC SNP frequently led to changes in nearby gene expression. This led the researchers to nominate putative causal genes in several schizophrenia disease regions, which can be explored in future studies for their role in causing the neuropsychiatric illness.

"Although schizophrenia and other neuropsychiatric disorders involve multiple risk genes that each have a small effect on disease risk and likely act in gene networks, our findings offer important insights that may advance an area of medicine with tremendous potential," said Dr. Duan. "We hope to continue harnessing multi-dimension genomic datasets and stem cell models to unravel how these devastating disorders are caused by genes and interactions with environmental factors such as stress or infection during early neurodevelopment."
-end-
This research builds on a substantial body of research in genomic medicine at NorthShore as well as the Center for Psychiatric Genetics at University of Chicago and NorthShore. First-author contributors to this study include Dr. Siwei Zhang and Hanwen Zhang at NorthShore, and Yifan Zhou, Min Qiao and Dr. Siming Zhao at the University of Chicago.

This research was funded by the National Institute of Mental Health.

NorthShore University HealthSystem

Related Schizophrenia Articles from Brightsurf:

Schizophrenia: When the thalamus misleads the ear
Scientists at the University of Geneva (UNIGE) and the Synapsy National Centre of Competence in Research (NCCR) have succeeded in linking the onset of auditory hallucinations - one of the most common symptoms of schizophrenia - with the abnormal development of certain substructures of a region deep in the brain called the thalamus.

Unlocking schizophrenia
New research, led by Prof. LIU Bing and Prof. JIANG Tianzi from the Institute of Automation of the Chinese Academy of Sciences and their collaborators have recently developed a novel imaging marker that may help in the personalized medicine of psychiatric disorders.

Researchers discover second type of schizophrenia
In a study of more than 300 patients from three continents, over one third had brains that looked similar to healthy people.

New clues into the genetic origins of schizophrenia
The first genetic analysis of schizophrenia in an ancestral African population, the South African Xhosa, appears in the Jan.

Dietary supplement may help with schizophrenia
A dietary supplement, sarcosine, may help with schizophrenia as part of a holistic approach complementing antipsychotic medication, according to a UCL researcher.

Schizophrenia: Adolescence is the game-changer
Schizophrenia may be related to the deletion syndrome. However, not everyone who has the syndrome necessarily develops psychotic symptoms.

Study suggests overdiagnosis of schizophrenia
In a small study of patients referred to the Johns Hopkins Early Psychosis Intervention Clinic (EPIC), Johns Hopkins Medicine researchers report that about half the people referred to the clinic with a schizophrenia diagnosis didn't actually have schizophrenia.

The ways of wisdom in schizophrenia
Researchers at UC San Diego School of Medicine report that persons with schizophrenia scored lower on a wisdom assessment than non-psychiatric comparison participants, but that there was considerable variability in levels of wisdom, and those with higher scores displayed fewer psychotic symptoms.

Recognizing the uniqueness of different individuals with schizophrenia
Individuals diagnosed with schizophrenia differ greatly from one another. Researchers from Radboud university medical center, along with colleagues from England and Norway, have demonstrated that very few identical brain differences are shared amongst different patients.

Resynchronizing neurons to erase schizophrenia
Today, a decisive step in understanding schizophrenia has been taken.

Read More: Schizophrenia News and Schizophrenia Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.