Protein loss plays role in acute T-cell leukemia

August 04, 2004

The loss of a key protein (Smad3) in a pathway that helps prevent tumors from forming is specific to one form of childhood leukemia, but not to other pediatric and adult forms of leukemia, according to a new study published in the August 5, 2004, New England Journal of Medicine*. The study was done by scientists at the National Cancer Institute (NCI), part of the National Institutes of Health (NIH), and gives researchers new insights into how leukemias vary on a molecular level.

Smad3 is an important player in a cellular network relay system called the transforming growth factor-beta (TGF-B ) signaling cascade. TGF-B binds to receptors on the surface of blood cells that develop in bone marrow and activates a multi-protein cascade that relays these external signals into the nucleus of the cell. These signals typically slow the rate at which these blood cells proliferate. Thus, when this signal pathway is interrupted, TGF-B can no longer control cell proliferation, and this potentially can lead to leukemia - a cancer of blood cells.

To better understand the role of Smad3 in this pathway and how it may vary in different forms of leukemia, John Letterio, M.D., and a team of researchers looked for the presence of Smad3 protein in samples of human leukemia cells collected from patients with one of three different childhood leukemias: a T-cell derived leukemia, B-cell derived leukemia (both are a type of white blood cell known as a lymphocyte), and non-lymphocyte leukemia. Smad3 protein was present in the B-cell and non-lymphocyte samples, but almost non-existent in all the T-cell samples. This lack of Smad3 protein also appears to be restricted to childhood T-cell leukemia, because the researchers demonstrated that Smad3 was present in two adult forms of T-cell leukemia: Sezary syndrome and a virus-induced (HTLV-1) leukemia.

In mice, deletion of one or both copies of the Smad3 gene specifically impairs the ability of TGF-B to stop T-cell proliferation, so the discovery that Smad3 was unique to the T-cell leukemia was not surprising. The surprise - and mystery - of these findings is the biology behind Smad3's absence. The leukemia cells produced normal levels of Smad3 mRNA - the instructions that cells use to make protein - indicating that the Smad3 gene is turned on. Furthermore, the researchers found that the sequence of the Smad3 gene in patient samples was identical to the normal Smad3 gene found in healthy T cells, signifying that a genetic mutation was not the culprit either.

"We don't yet know the mechanisms behind this loss of Smad3 protein," said Letterio, "but two possibilities may be that protein synthesis is being blocked or that the protein is made but degraded very quickly."

What the researchers do know is that Smad3 loss alone is likely not responsible for onset of leukemia, since the Smad3-deficient mice do not develop tumors despite their increased number of T-cells. To address this idea that some other factor is required, Letterio's group examined the connection between Smad3 and p27Kip1, another protein with an important role in regulating cell growth. Mice with p27Kip1 deleted have increased numbers of T-cells but, similar to mice with Smad3 deleted, they do not develop leukemia. However, when the researchers deleted one copy of the Smad3 gene in these p27Kip1-deficient mice, 50 percent of the mice died within six months, and several of them developed leukemia. Mice with both p27Kip1 and Smad3 completely deleted could not be studied, as most died as embryos.

The researchers hope that continued work will uncover other genetic alterations that, when linked with Smad3 loss, play a role in the genesis of pediatric T-cell leukemia. Letterio also pointed out that their study did not examine all the variations of leukemia. "Whether or not Smad3 plays a role in other forms of leukemia is still an open question," he said.
*Wolfraim LA, Fernandez TM, Mamura M, Fuller WL, Kumar R, Cole DE, Byfield S, Felici A, Flanders KC, Walz TM, Roberts AB, Aplan PD, Balis FM, and Letterio JJ. "Loss of Smad3 in Acute T-Cell Lymphoblastic Leukemia", New England Journal of Medicine, Vol 351, 2004.

NIH/National Cancer Institute

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to