Silenced genes as a warning sign of blood cancer

August 04, 2009

In many types of cancer, parts of the genetic material of tumor cells are switched off by chemical labels called methyl groups. This kind of methyl labeling ranges among the epigenetic changes that do not change the sequence of DNA building blocks. Such labels are found particularly often in genes which act as important inhibitors of pathogenic cell growth.

Cancer researchers do not know why healthy cells and cancer cells differ in their methylation patterns and why it is particularly the cancer inhibitors that are frequently switched off. The study of these questions is a very promising area of research, because there are drugs available that can prevent the attachment of methyl groups or other epigenetic changes and, thus, at least delay the onset of cancer.

Professor Dr. Christoph Plass at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) has investigated, jointly with colleagues from the Ohio State University in Columbus, U.S.A., the processes leading to the different methyl labels in cancer cells. A key question is when the first labels occur in the development of cancer. In their recently published study the investigators used mice affected by chronic lymphocytic leukemia as a model for studying the disease.

The researchers investigated the genetic material of these mice at regular intervals from birth. They discovered first cancer-typical methylation patterns in mice that were only three months old. This means that deviations in methylation occur long before the first signs of disease appear. These were not observed before the animals were thirteen months old. Moreover, the researchers were able to show that methylation patterns in murine DNA are largely corresponding to those found in humans suffering from leukemia. This confirms that the mouse model is suitable for studying the disease.

"Since first deviations in methylation occur so early in mice, we should find out whether this is also true for humans. If so, an early methylation test in high-risk individuals could provide clues about a developing cancer," Christoph Plass says. In this case, preventive medical intervention might be possible. Drugs preventing methyl group attachment might delay the onset of cancer. First clinical studies have already been started to check this. "This is probably most effective in a very early phase of methylation," Plass explains. The researchers believe that the first chemically deactivated genes trigger whole cascades of changes in the genetic material which can hardly be controlled at a later stage.

Keyword: Epigenetics

The cells of the roughly 200 different tissues of the human body can fulfill their special tasks only by regulating the activity of their respective genes very specifically. Although every single gene is equipped with its own control elements, this is not enough for complex coordination. There is a second code that serves as an additional control level. In addition to the genetic switches that are directly integrated in the genetic material, the DNA, genes can also be switched on or off by chemical labeling of the DNA or the DNA packaging proteins. The most common of such epigenetic mutations is the attachment of methyl groups. The effect of these small chemical compounds is that a gene can no longer be read and translated into proteins.

Unlike genetic mutations, which permanently change the sequence of the DNA building blocks, all epigenetic mutations are reversible and, therefore, potential target structures of appropriate drugs.
-end-
Shih-Shih Chen, Aparna Raval, Amy J. Johnson, Erin Hertlein, Te-Hui Liu, Victor X. Jin, Mara Sherman, Shu-Jun Liu, David W. Dawson, Katie E. Williams, Mark Lanasa, Sandya Liyanarachchi, Thomas S. Lin, Guido Marcucci, Yuri Pekarsky, Ramana Davuluri, Carlo M. Croce, Denis C. Guttridge, Michael A. Teitell, John C. Byrd,, and Christoph Plass: Epigenetic changes during disease progression in a murine model of human chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences, USA, 2009, DOI: 10.1073/pnas.0906455106

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is the largest biomedical research institute in Germany and is a member of the Helmholtz Association of National Research Centers. More than 2,000 staff members, including 850 scientists, are investigating the mechanisms of cancer and are working to identify cancer risk factors. They provide the foundations for developing novel approaches in the prevention, diagnosis, and treatment of cancer. In addition, the staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The Center is funded by the German Federal Ministry of Education and Research (90%) and the State of Baden-Württemberg (10%).

Helmholtz Association

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.