Nav: Home

Giving robots a more nimble grasp

August 04, 2015

Most robots on a factory floor are fairly ham-handed: Equipped with large pincers or claws, they are designed to perform simple maneuvers, such as grabbing an object, and placing it somewhere else in an assembly line. More complex movements, such as adjusting the grasp on an object, are still out of reach for many industrial robots.

Engineers at MIT have now hit upon a way to impart more dexterity to simple robotic grippers: using the environment as a helping hand. The team, led by Alberto Rodriguez, an assistant professor of mechanical engineering, and graduate student Nikhil Chavan-Dafle, has developed a model that predicts the force with which a robotic gripper needs to push against various fixtures in the environment in order to adjust its grasp on an object.

For instance, if a robotic gripper aims to pick up a pencil at its midpoint, but instead grabs hold of the eraser end, it could use the environment to adjust its grasp. Instead of releasing the pencil and trying again, Rodriguez's model enables a robot to loosen its grip slightly, and push the pencil against a nearby wall, just enough to slide the robot's gripper closer to the pencil's midpoint.

Partnering robots with the environment to improve dexterity is an approach Rodriguez calls "extrinsic dexterity" -- as opposed to the intrinsic dexterity of, say, the human hand. To adjust one's grip on a pencil in a similar fashion, a person, using one hand, could simply spider-crawl her fingers towards the center of the pencil. But programming such intrinsic dexterity in a robotic hand is extremely tricky, significantly raising a robot's cost.

With Rodriguez's new approach, existing robots in manufacturing, medicine, disaster response, and other gripper-based applications may interact with the environment, in a cost-effective way, to perform more complex maneuvers.

"Chasing the human hand is still a very valid direction [in robotics]," Rodriguez says. "But if you cannot afford having a $100,000 hand that is very complex to use, this [method] brings some dexterity to very simple grippers."

Rodriguez and Chavan-Dafle will present a paper detailing their new approach in September at the International Conference on Intelligent Robotics and Systems.

Giving robotics a push

Rodriguez is currently exploring multiple ways in which the environment may be exploited to increase the dexterity of simple robotic grippers. In ongoing work, his group is looking for ways in which a robot might use gravity to toss and catch an object, as well as how surfaces like a tabletop may help a robot roll an object between its fingers.

In this most recent paper, the group investigates an approach to extrinsic dexterity called "prehensile pushing" -- exploiting fixtures in the environment to manipulate a grasped object.

"We're sort of outsourcing that dexterity that you don't have in the gripper to the environment and the arm," Rodriguez explains. "Instead of dexterity that's intrinsic to the hand, it's extrinsic, in the environment."

The researchers developed a model that describes the forceful interaction between a gripper, a grasped object, and different types of external fixtures such as corners, edges, or surfaces. To predict how an object may move as a gripper pushes it against a given fixture, the researchers designed the model to take into account various factors, including the frictional forces between the gripper and the object, and between the object and the environment, as well as the object's mass, inertia, and shape.

"Exploiting the environment"

In its current iteration, the model predicts the force a gripper must exert, on the object and the environment, to maneuver the object to a desired orientation. For instance, how tight should a robot grip a bar, and how hard must it push that bar against a point, to rotate the bar 45 degrees?

Rodriguez and Chavan-Dafle tested the model's predictions against actual experiments, using a simple two-fingered gripper to manipulate a short rod, either rolling, pivoting, or sliding it against three fixtures: a point, a line, and a plane. The team measured the forces the robot exerted to maneuver the rod into the desired orientations, and compared the experimental forces with the model's predicted forces.

"The agreement was pretty good," Rodriguez says. "We've validated the model. Now we're working on the planning side, to see how to plan motions to generate certain trajectories. One of the things we want to ask in the future is: How do you engineer fixtures in the environment so that a robot's motions are more reliable, and can be executed faster?"

Ultimately, Rodriguez sees extrinsic dexterity as an inexpensive way to make simple robots more nimble for a variety of uses: A surgical robot may push a scalpel against an operating table to adjust its grip, while a forensic robot in the field may angle a piece of evidence against a nearby rock to better examine it.

"Exploiting the environment is, and will be, important for robots and the research community," Rodriguez says. "Any applications where you have limitations in terms of payload or cost or complexity, areas like manufacturing, or surgery, or field operations, or even space exploration -- whenever you have a gripper that is not dexterous like a human hand, this [method] gives you some of that dexterity."
This research was supported, in part, by the National Science Foundation.

Additional background

ARCHIVE: Helping robots put it all together

ARCHIVE: Getting a grip on robotic grasp

Massachusetts Institute of Technology

Related Robots Articles:

When it comes to robots, reliability may matter more than reasoning
What does it take for a human to trust a robot?
Robots need a new philosophy to get a grip
Robots need to know the reason why they are doing a job if they are to effectively and safely work alongside people in the near future.
How can robots land like birds?
Birds can perch on a wide variety of surfaces, thick or thin, rough or slick.
Soft robots for all
Each year, soft robots gain new abilities. They can jump, squirm, and grip.
Robots activated by water may be the next frontier
Columbia University scientists have developed material that can drive mechanical systems, with movements controlled by a pattern set into the design.
More Robots News and Robots Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...