Nav: Home

Autism Speaks MSSNG study expands understanding of autism's complex genetics

August 04, 2016

A new study from Autism Speaks' MSSNG program expands understanding of autism's complex causes and may hold clues for the future development of targeted treatments. The report, appearing in npj Genomic Medicine is the largest-ever whole genome study of autism, involving 200 children with the condition and both their unaffected parents.

The new research focuses on newly arising, or de novo, gene changes in the germline cells that produce a parent's eggs or sperm. Previous studies have shown that these mutations can be major contributors to autism through their effects on early brain development.

The 600 fully sequenced genomes came from MSSNG (pronounced "missing"), the world's largest collection of autism genomes and a collaborative effort of Autism Speaks and The Hospital for Sick Children (SickKids), in Toronto. More than halfway to its goal of sequencing more than 10,000 autism genomes, MSSNG has made this unprecedented resource freely available for worldwide research into the causes and personalized treatments for autism.

Geneticists Stephen Scherer and Ryan Yuen, of SickKids, led the study team, which also included scientists with the University of Toronto, Google, BGI-Shenzhen (China) and Autism Speaks.

The researchers found:
  • An abundance of autism-linked changes in DNA outside of the gene-coding regions of the genome. Traditional genetic testing largely ignores the non-coding regions of the genome -- which make up 98 percent of our DNA. Coding DNA spells out our genes. Non-coding DNA had long been considered "junk," with no known function. Geneticists now appreciate that it helps regulate the activity of our genes. This regulation is particularly crucial for healthy brain development, which involves genes turning on and off at precisely the right times.


"This represents the most comprehensive assessment to date on the contribution of non-coding variants to autism," Dr. Yuen says. "As such, it provides an important road map on how whole genome sequencing can advance autism research in the future."
  • A clear difference between the de novo mutations that come from the mother versus the father. The study confirmed previous findings that most autism-linked de novo mutations come from the father and tend to increase with his age.


However, the researchers also found that clustered, or concentrated, stretches of de novo mutations tend to come from the mother. "This new finding may be evidence that different types of gene-change and gene-repair mechanisms are at work in men versus women," Dr. Yuen says. Indeed, the clustered mutations from the mother tended to occur near stretches of deleted or repeated DNA called copy number variations (CNVs) -- a type of mutation that the research team had previously linked to autism.

In addition to genetic changes in egg and sperm, the analysis turned up autism-associated mutations that likely occurred in the embryo soon after fertilization. "These genetic changes can arise due to environmental insults [such as exposure to toxic chemicals]," Dr. Yuen says.
  • A new way to explore epigenetic risk factors for autism. The team also developed new methods to look at changes in the epigenetic control of gene expression. Epigenetics is the study of proteins that wrap around our DNA to help regulate gene activity. These epigenetic controls can be disrupted by some -- perhaps many -- of the environmental influences suspected of increasing autism risk. Examples include exposure to certain pollutants, nutritional deficiencies and inflammation during pregnancy. Using their new test, the researchers found significantly disrupted epigenetic patterns in just over 1 percent of the genomes they analyzed.
  • A cascade effect, with one altered gene affecting the expression of many other genes involved in brain development. "Using new statistical methods and the whole genome sequence as a framework, we found genes with mutations that led to a cascade of changes in gene expression," Dr. Yuen says. This may help explain how the hundreds of rare gene changes associated with autism may converge to affect a few vital pathways in early brain development, he notes.


"These findings advance our efforts to improve diagnostics and precision healthcare for autism," says geneticist Mathew Pletcher, Autism Speaks interim chief science officer and a co-author on the report. "There's so much about the causes of autism that we would miss if we focused only on the gene-coding regions of the genome. This demonstrates again why whole genome sequencing is so important."

"These findings represent a step toward better understanding the interplay between the genetic and non-genetic factors that contribute to autism risk," Dr. Scherer adds. "But we need to analyze many more whole genomes - such as the number being sequenced through MSSNG - to fully understand these intriguing findings." Dr. Scherer is project director for the Autism Speaks MSSNG program and directs the Centre for Applied Genomics at Toronto's Sick Children's Hospital. Dr. Yuen's research was supported by an Autism Speaks Meixner Postdoctoral Fellowship in Translational Research. Read more about Autism Speaks research fellowships here.

-end-

About Autism

Autism is a general term used to describe a group of complex developmental brain disorders - autism spectrum disorders - caused by a combination of genes and environmental influences. These disorders are characterized, in varying degrees, by communication difficulties, social and behavioral challenges, and repetitive behaviors. An estimated 1 in 68 children in the U.S. is on the autism spectrum.

About Autism Speaks

Autism Speaks is the world's leading autism science and advocacy organization. It is dedicated to funding research into the causes, prevention, treatments and a cure for autism; increasing awareness of autism spectrum disorders; and advocating for the needs of individuals with autism and their families. Autism Speaks was founded in February 2005 by Suzanne and Bob Wright, the grandparents of a child with autism. Since its inception, Autism Speaks has committed more than $570 million to its mission, the majority in science and medical research. On the global front, Autism Speaks has established partnerships in more than 70 countries on five continents to foster international research, services and awareness. To learn more about Autism Speaks, please visit AutismSpeaks.org.

About The Hospital for Sick Children

The Hospital for Sick Children (SickKids) is recognized as one of the world's foremost paediatric health-care institutions and is Canada's leading centre dedicated to advancing children's health through the integration of patient care, research and education. Founded in 1875 and affiliated with the University of Toronto, SickKids is one of Canada's most research-intensive hospitals and has generated discoveries that have helped children globally. Its mission is to provide the best in complex and specialized child and family-centred care; pioneer scientific and clinical advancements; share expertise; foster an academic environment that nurtures health-care professionals; and champion an accessible, comprehensive and sustainable child health system. SickKids is proud of its vision for Healthier Children. A Better World. For more information, please visit http://www.sickkids.ca. Follow us on Twitter (@SickKidsNews) and Instagram (@SickKidsToronto).

Autism Speaks

Related Autism Articles:

Genes, ozone, and autism
Exposure to ozone in the environment puts individuals with high levels of genetic variation at an even higher risk for developing autism than would be expected just by adding the two risk factors together, a new analysis shows.
A blood test for autism
An algorithm based on levels of metabolites found in a blood sample can accurately predict whether a child is on the autism spectrum of disorder (ASD), based upon a recent study.
New form of autism found
Autism spectrum disorders (ASD) affect around one percent of the world's population and are characterized by a range of difficulties in social interaction and communication.
Autism Speaks MSSNG study expands understanding of autism's complex genetics
A new study from Autism Speaks' MSSNG program expands understanding of autism's complex causes and may hold clues for the future development of targeted treatments.
Paths to Autism: One or Many?
A new report in Biological Psychiatry reports that brain alterations in infants at risk for autism may be widespread and affect multiple systems, in contrast to the widely held assumption of impairment specifically in social brain networks.
Raising a child with autism
Humans are resilient, even facing the toughest of life's challenges.
Explaining autism
Recognizing a need to better understand the biology that produces Autism Spectrum Disorder (ASD) symptoms, scientists at Duke-NUS Medical School (Duke-NUS) and the National Neuroscience Institute (NNI), Singapore, have teamed up and identified a novel mechanism that potentially links abnormal brain development to the cause of ASDs.
Autism breakthrough
Using a visual test that is known to prompt different reactions in autistic and normal brains, Harvard researchers have shown that those differences were associated with a breakdown in the signaling pathway used by GABA, one of the brain's chief inhibitory neurotransmitters.
New options for treating autism
The release of oxytocin leads to an increase in the production of anandamide, which causes mice to display a preference for interacting socially.
The Autism Science Foundation launches the Autism Sisters Project
The Autism Science Foundation, a not-for-profit organization dedicated to supporting and funding autism research, today announced the launch of the Autism Sisters Project, a new initiative that will give unaffected sisters of individuals with autism the opportunity to take an active role in accelerating research into the 'Female Protective Effect.'

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.