Nav: Home

Buck Institute study sheds light on gender differences in diabetes and aging

August 04, 2016

All's not fair in love and glucose intolerance - overweight men are more prone to get type 2 diabetes than are overweight women. The same phenomena holds true in mice and no one know why. Researchers at the Buck Institute provided a possible answer to that question by discovering that a protein involved in nutrient sensing and metabolism gets inhibited in male - but not female - mice fed a high fat diet. In addition to providing a pathway to deal with the gender difference, the findings, published in Cell Reports, also show that boosting the protein protects male mice from age-induced obesity and metabolic decline.

"We've known for a long time that there are differences in aging in men and women and in male and female mice," said Brian Kennedy, PhD, senior author and President and CEO of the Buck Institute. "Nearly every time we develop an intervention that slows aging or impacts healthspan in mice it either works better in males or in females and we speculate as to why that is the case. What we've identified here is one potential mechanism that could underlie the differences between males and females."

The mechanism involves the TOR (target of rapamycin) pathway which is highly conserved among species and is linked to aging; reducing TOR signaling extends lifespan in yeast, worms, flies and mice and perhaps even in humans. In this study researchers found that a component of that pathway, 4E-BP1, is differentially regulated in mice depending on gender. "We think 4E-BP1 is protective, and is involved in insulin sensitivity and the maintenance of fat cells . We found that it was significantly reduced in the skeletal muscle and fat tissue of the overfed male mice," said Shi-Yin Tsai, PhD, lead scientist and postdoctoral fellow in the Kennedy lab. "Restoring 4E-BP1 protected the males against high-fat induced obesity and insulin resistance, and transgenic 4E-BP1 male mice fed a normal diet were also protected from developing aging-induced obesity and metabolic decline."

"When we restored 4E-BP1, the male mice became more like the females," said Kennedy. "They still got obese when they ate a high fat diet, they just didn't develop as much diabetes. They also accumulated less of the white 'belly fat' associated with diabetes and had lower levels of circulating lipids and triglycerides."

Kennedy said the ultimate goal is to develop therapeutics - for both diabetes and other age-related conditions - that work in people. "Gender is an essential part of the equation," he said. His lab will be combining genetic studies along with compound screening with an aim of either boosting or stabilizing 4E-BP1.

Kennedy said the study also points out need to include both male and female mice in preclinical research. "We found this phenomena with 4E-BP1 because we were doing the experiments in both male and female mice and we saw the difference," he said. "Most preclinical work in diabetes is done in male mice because they get the disease quicker which makes the experiments cheaper and faster to do. I understand that reasoning, but we are likely missing crucial information in the process."
-end-
Citation: Increased 4E-BP1 expression protects against diet-induced obesity and insulin resistance in male mice DOI: 10.1016/j.celrep.2016.07.029

Other Buck researchers involved in the study include Ariana, A. Rodriguez, Elizabeth Del Greco, Kaili Lia Carr, Joanna M. Sitzmann, Emmeline C. Academia, Christian Michael Viray, Lizbeth Leon Martinez, and Brian Stephen Kaplowitz. Other contributors include Somashish G. Dastidar, Travis D. Ashe and Albert R. La Spada, Department of Pediatrics, Cellular & Molecular Medicine, Institute for Genomic Medicine and Sanford Consortium for Regenerative Medicine, University of California, San Diego.

Acknowledgments: The study was supported by NIH grants R01AG033373 and R01AG035336 and R01AG033082 as well as the Ellison Medical Foundation.

About the Buck Institute for Research on Aging

The Buck Institute is the U.S.'s first independent research organization devoted to Geroscience - focused on the connection between normal aging and chronic disease. Based in Novato, CA, The Buck is dedicated to extending "Healthspan", the healthy years of human life and does so utilizing a unique interdisciplinary approach involving laboratories studying the mechanisms of aging and those focused on specific diseases. Buck scientists strive to discover new ways of detecting, preventing and treating age-related diseases such as Alzheimer's and Parkinson's, cancer, cardiovascular disease, macular degeneration, osteoporosis, diabetes and stroke. In their collaborative research, they are supported by the most recent developments in genomics, proteomics, bioinformatics and stem cell technologies. For more information: http://www.thebuck.org

Buck Institute for Research on Aging

Related Diabetes Articles:

The role of vitamin A in diabetes
There has been no known link between diabetes and vitamin A -- until now.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
Type 2 diabetes and obesity -- what do we really know?
Social and economic factors have led to a dramatic rise in type 2 diabetes and obesity around the world.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
The Lancet Diabetes & Endocrinology: Older Americans with diabetes living longer without disability, US study shows
Older Americans with diabetes born in the 1940s are living longer and with less disability performing day to day tasks than those born 10 years earlier, according to new research published in The Lancet Diabetes & Endocrinology journal.
Reverse your diabetes -- and you can stay diabetes-free long-term
A new study from Newcastle University, UK, has shown that people who reverse their diabetes and then keep their weight down remain free of diabetes.
New cause of diabetes
Although insulin-producing cells are found in the endocrine tissue of the pancreas, a new mouse study suggests that abnormalities in the exocrine tissue could cause cell non-autonomous effects that promotes diabetes-like symptoms.
The Lancet Diabetes & Endocrinology: Reducing sugar content in sugar-sweetened drinks by 40 percent over 5 years could prevent 1.5 million cases of overweight and obesity in the UK and 300,000 cases of diabetes
A new study published in The Lancet Diabetes & Endocrinology journal suggests that reducing sugar content in sugar sweetened drinks (including fruit juices) in the UK by 40 percent over five years, without replacing them with any artificial sweeteners, could prevent 500,000 cases of overweight and 1 million cases of obesity, in turn preventing around 300,000 cases of type 2 diabetes, over two decades.
Breastfeeding lowers risk of type 2 diabetes following gestational diabetes
Women with gestational diabetes who consistently and continuously breastfeed from the time of giving birth are half as likely to develop type 2 diabetes within two years after delivery, according to a study from Kaiser Permanente published today in Annals of Internal Medicine.

Related Diabetes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".