Nav: Home

Pancreatic cancer resists personalized medicine -- what researchers are doing to fight back

August 04, 2016

A team led by University of Arizona researchers is taking a new, patient-directed approach to treating pancreatic cancer. Rather than relying on conventional cell lines that have defined effective drug targets for other types of cancers, they are creating and sequencing cell lines from a cancer patient's own tissue. Their results, outlined August 4 in Cell Reports, reveal that pancreatic tumors are more varied than previously thought and that drug sensitivity is unique to each patient.

"Currently there are no targeted therapies directly against the hallmark mutations common in pancreatic cancer, and each patient derived model we tested had its own unique therapeutic sensitivities," says author Erik Knudsen, a professor of medicine at the University of Arizona Cancer Center. "I'd say that's why many pancreatic cancer clinical trials fail; it's that expectation that most tumors will respond in the same way to a drug."

In the study, the team turned to a library of cancer drugs, representative of what's available to patients, and tested each individually against a panel of different cell lines: either conventional pancreatic cell lines, which are often used by researchers and pharmaceuticals, or cell lines that the team developed directly from cancer patients. While conventional pancreatic cell lines were more sensitive to standard drugs used in pancreatic cancer treatment, cell lines from patients were not, with only a "handful" responding to any single-agent treatment.

"There are reasons why the response might have been so poor," says corresponding author Agnieszka Witkiewicz, a professor of pathology and medicine at the University of Arizona. Typically, personalized medicine relies on genome sequencing, using a patient's tumor DNA to determine the mutations that cancer drugs can target. However, mutations that lead to cancer are complex given that some can override others, making a singular mutation hard to target. Combination therapy--using several different cancer treatments in conjunction--can solve this problem, but determining which drugs to use and in what doses requires models that replicate the genetics of the individual patient's tumor.

Development of cell lines directly from patients can be challenging; it's time consuming and requires appropriate authentication in relation to the tumor from which the cell lines were derived. Unfortunately, for most commonly used cell lines, the patient's tumor was never fully characterized genetically, and the cell lines were not monitored for changes over time. As shown in this study, these difficulties can be overcome, and new models that better reflect a patient's cancer can be developed.

"There's a bit of frustration with the current personalized medicine approach," says Knudsen. "If you sequence a hundred tumors from patients in the clinic, you might be able to treat one or two patients with the resulting information, because of the nature of pancreatic cancer genetics. Using new, patient-derived models fills in the gap for us and lets us guide our therapies with functional sensitivities to drugs, not with preconceived notions."

"Pancreatic cancer is particularly challenging to treat," says Witkiewicz. "Since there are no early detection tests, the majority of patients present with advanced disease. By that time, the tumor has accumulated multiple genetic changes selecting for resistance to many therapies."

Both researchers stressed that testing the cell lines from larger amounts of patients is key in advancing pancreatic cancer treatment. Disease models that are derived from a single patient with the patient's specific mutations are also necessary to test the therapies derived from genomic sequencing before moving on to the patient. Both researchers agreed that clinical trials that incorporate a drug-screened patient model will be critical for improving patients' outcomes.

"The path forward in studying pancreatic cancer is one that marries genetic analysis while also functionally analyzing drug sensitivities," says Knudsen. "This isn't a part of any conventional trial design in pancreatic cancer today."

"All of our work is about the patients at the end of the day--it's about a disease where standard approaches repeatedly have failed and patients really need hope," adds Witkiewicz. "I think this work seeds new ideas for changing the paradigm for the treatment of pancreatic cancer-- especially when there are so many failed trials. It will take a concerted effort from all of us, in academia, in pharma, in the clinic--everywhere."
-end-
The research was supported by the National Institutes of Health.

Cell Reports, Witkiewicz et al.: "Integrated Patient-Derived Models Delineate Individualized Therapeutic Vulnerabilities of Pancreatic Cancer" http://www.cell.com/cell-reports/fulltext/S2211-1247(16)30924-X

Cell Reports (@CellReports), published by Cell Press, is a weekly open-access journal that publishes high-quality papers across the entire life sciences spectrum. The journal features reports, articles, and resources that provide new biological insights, are thought-provoking, and/or are examples of cutting-edge research. Visit: http://www.cell.com/cell-reports. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".