Nav: Home

Cornell scientists convert carbon dioxide, create electricity

August 04, 2016

ITHACA, N.Y. - While the human race will always leave its carbon footprint on the Earth, it must continue to find ways to lessen the impact of its fossil fuel consumption.

"Carbon capture" technologies - chemically trapping carbon dioxide before it is released into the atmosphere - is one approach. In a recent study, Cornell University researchers disclose a novel method for capturing the greenhouse gas and converting it to a useful product - while producing electrical energy.

Lynden Archer, the James A. Friend Family Distinguished Professor of Engineering, and doctoral student Wajdi Al Sadat have developed an oxygen-assisted aluminum/carbon dioxide power cell that uses electrochemical reactions to both sequester the carbon dioxide and produce electricity.

Their paper, "The O2-assisted Al/CO2 electrochemical cell: A system for CO2 capture/conversion and electric power generation," was published July 20 in Science Advances.

The group's proposed cell would use aluminum as the anode and mixed streams of carbon dioxide and oxygen as the active ingredients of the cathode. The electrochemical reactions between the anode and the cathode would sequester the carbon dioxide into carbon-rich compounds while also producing electricity and a valuable oxalate as a byproduct.

In most current carbon-capture models, the carbon is captured in fluids or solids, which are then heated or depressurized to release the carbon dioxide. The concentrated gas must then be compressed and transported to industries able to reuse it, or sequestered underground. The findings in the study represent a possible paradigm shift, Archer said.

"The fact that we've designed a carbon capture technology that also generates electricity is, in and of itself, important," he said. "One of the roadblocks to adopting current carbon dioxide capture technology in electric power plants is that the regeneration of the fluids used for capturing carbon dioxide utilize as much as 25 percent of the energy output of the plant. This seriously limits commercial viability of such technology. Additionally, the captured carbon dioxide must be transported to sites where it can be sequestered or reused, which requires new infrastructure."

The group reported that their electrochemical cell generated 13 ampere hours per gram of porous carbon (as the cathode) at a discharge potential of around 1.4 volts. The energy produced by the cell is comparable to that produced by the highest energy-density battery systems.

Another key aspect of their findings, Archer says, is in the generation of superoxide intermediates, which are formed when the dioxide is reduced at the cathode. The superoxide reacts with the normally inert carbon dioxide, forming a carbon-carbon oxalate that is widely used in many industries, including pharmaceutical, fiber and metal smelting.

"A process able to convert carbon dioxide into a more reactive molecule such as an oxalate that contains two carbons opens up a cascade of reaction processes that can be used to synthesize a variety of products," Archer said, noting that the configuration of the electrochemical cell will be dependent on the product one chooses to make from the oxalate.

Al Sadat, who worked on onboard carbon capture vehicles at Saudi Aramco, said this technology in not limited to power-plant applications. "It fits really well with onboard capture in vehicles," he said, "especially if you think of an internal combustion engine and an auxiliary system that relies on electrical power."

He said aluminum is the perfect anode for this cell, as it is plentiful, safer than other high-energy density metals and lower in cost than other potential materials (lithium, sodium) while having comparable energy density to lithium. He added that many aluminum plants are already incorporating some sort of power-generation facility into their operations, so this technology could assist in both power generation and reducing carbon emissions.

A current drawback of this technology is that the electrolyte - the liquid connecting the anode to the cathode - is extremely sensitive to water. Ongoing work is addressing the performance of electrochemical systems and the use of electrolytes that are less water-sensitive.
-end-
This work made use of the Cornell Center for Materials Research, which is supported by the National Science Foundation. Funding came from a grant from the King Abdullah University of Science and Technology Global Research Partnership program.

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews.

Cornell University

Related Carbon Articles:

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.
How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.
New route to carbon-neutral fuels from carbon dioxide discovered by Stanford-DTU team
A new way to convert carbon dioxide into the building block for sustainable liquid fuels was very efficient in tests and did not have the reaction that destroys the conventional device.
How much carbon the land can stomach with more carbon dioxide in the air
Researchers from 28 institutions in nine countries succeeded in quantifying carbon dioxide fertilization for the past five decades, using simulations from 12 terrestrial ecosystem models and observations from seven field carbon dioxide enrichment experiments.
'Charismatic carbon'
According to the Intergovernmental Panel on Climate Change (IPCC), addressing carbon emissions from our food sector is absolutely essential to combatting climate change.
Extreme wildfires threaten to turn boreal forests from carbon sinks to carbon sources
A research team investigated the impact of extreme fires on previously intact carbon stores by studying the soil and vegetation of the boreal forest and how they changed after a record-setting fire season in the Northwest Territories in 2014.
Can we still have fun if the UK goes carbon neutral?
Will Britain going carbon neutral mean no more fun? Experts from the University of Surrey have urged local policy makers to put in place infrastructure that will enable people to enjoy recreation and leisure while keeping their carbon footprint down.
Could there be life without carbon? (video)
One element is the backbone of all forms of life we've ever discovered on Earth: carbon.
Biodiversity and carbon: perfect together
Biodiversity conservation is often considered to be a co-benefit of protecting carbon sinks such as intact forests to help mitigate climate change.
Discovery of microbial activity in carbon sinking as a gatekeeper of Earth's deep carbon
Carbon is transported from Earth's surface to the mantle where the oceanic crust subducts beneath continents.
More Carbon News and Carbon Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.