Nav: Home

Duke team identifies new 'mega-complex' involved in cell signaling

August 04, 2016

DURHAM, N.C. -- Duke Health-led researchers have discovered new information about the signaling mechanism of cells that could one day help guide development of more specific drug therapies.

For years, well-established science detailed the intricacies of how cells change function after receiving chemical signals from hormones, neurotransmitters or even drugs.

Receptors on the outside of cells were known to launch the signaling process, which alerts proteins that trigger a cascade of events leading to the desired response, followed by a desensitization mechanism that allows cells to return to baseline.

In recent years, however, the process has shown additional complexity that seemed to defy foundational assumptions, notably in how and where these signals can arise within the cell.

Now researchers at Duke Health, led by Robert Lefkowitz, M.D., report that they appear to have solved this enigma. Lefkowitz, a James B. Duke Professor of Medicine at Duke and a Howard Hughes Medical Institute investigator, shared the 2012 Nobel Prize in Chemistry for describing cell signaling molecules and defining the underlying science for how therapies such as beta blockers and antihistamines can use them to advantage.

In a study published online Aug. 4 in the journal Cell, Lefkowitz -- along with co-lead authors Alex R. B. Thomsen and Thomas J. Cahill III and colleagues -- describe a new paradigm for how a class of cell surface receptors known as G protein-coupled receptors (GPCRs) activate the signaling mechanism of cells.

Classically, it was known that GPCRs located along the plasma membrane inside the cell activate G proteins, which are the molecular switches that transmit signals from external sources into the cell's interior, telling the cell how to function.

The activation process is followed by desensitization, led by a protein called beta-arrestin that binds to the receptor, blocking further activation of G proteins and pulling the receptor to the inside of the cell in a process termed internalization or endocytosis. The end result of these two processes is to silence receptor signaling, allowing cellular function to return to status quo.

In recent years, however, scientists learned that some GPCRs continue to signal to G proteins even after beta-arrestin has been deployed and the receptors were internalized in the cellular compartments, called endosomes. These observations challenged the known scheme.

The Lefkowitz team -- using a variety of biochemical, biophysical and cell-based methods -- describe the existence, functionality and architecture of previously unknown super structures of receptors, which they've called "mega-plexes."

These mega-plexes differ from the typical couplings of the receptors and beta-arrestin, binding simultaneously through their core region with G protein and through a tail region with beta-arrestin. Since beta-arrestin only interacts with the receptor tail, the entire inner surface of the receptor is exposed, enabling the receptor to keep activating the G protein.

"The formation of such mega-plexes explains how G proteins can continue to send signals after being internalized by GPCRs," Lefkowitz said. "This opens a whole world of possibilities yet to be explored to manipulate this duality of signaling from outside and inside the cell for therapeutic benefit."

Co-lead author Thomsen said some previous studies showed that the cells respond differently when G protein signaling occurs from different cellular compartments.

"As a result, pharmaceutical drugs developed in the future, if they are capable of regulating signaling at specific compartments, might be able to better treat certain diseases while having fewer side effects," Thomsen said. He added that such research is in its infancy and clinical applications are years away.
-end-
In addition to Lefkowitz, Thomsen and Cahill, study authors from Duke include Arun K. Shukla, Alem W. Kahsai, Ryan T. Strachan, Biswaranjan Pani and Liyin Huang.

They were joined by co-lead author Bianca Plouffe, Billy Breton, Franziska M. Heydenreich and Michel Bouvier at the University of Montreal; and Jeffrey T. Tarrasch, Annie M. Dosey, Georgios Skiniotis, Jacob P. Mahoney and Roger K. Sunahara at the University of Michigan, Ann Arbor.

The study received support from the Howard Hughes Medical Institute; the Danish Council for Independent Research; the Lundbeck Foundation; the National Institutes of Health (F30HL129803, RO1GM083118, T32GM007767, DK090165, HL16037); the Canadian Institutes of Health Research; and the Swiss National Science Foundation (P1EZP3_165219, MOP10501).

Lefkowitz is a co-founder and shareholder of Trevena, Inc., a biopharmaceutical company focused on developing GPCR-targeted medicines. Authors reported no other conflicts.

Duke University Medical Center

Related Proteins Articles:

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
More Proteins News and Proteins Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...