Nav: Home

The Lancet Oncology: Australian researchers uncover complex genetic secrets of cancer risk

August 04, 2016

Cancer is a disease of our genes - yet our understanding of how our genetic makeup affects our risk of cancer is still rudimentary.

Now, that's set to change, following pioneering work by Australian researchers to understand the genetics of risk in sarcoma. In a landmark study of over 1000 sarcoma patients, the researchers uncovered numerous new genetic risk factors for the cancer - and, in a world first for any cancer type, they showed that carrying two or more of these rare mutations increases an individual's cancer risk.

Sarcomas are cancers of connective tissues that disproportionately affect the young. They are one of the three leading causes of disease-related death among children and young adults in Australia, and sarcoma survivors are at higher risk of developing a second cancer.

The new findings relating to cancer risk were uncovered through the International Sarcoma Kindred Study (ISKS), an Australian-led international consortium that is exploring the genetic basis of sarcoma in over 1000 individuals - the largest study ever conducted in this disease. The research is published today in the leading journal The Lancet Oncology.

The ISKS team used a 'gene panel' of 72 genes to detect mutations in each study participant. They identified mutations in a number of new genes that significantly increase the risk of developing sarcoma, including in the genes ERCC2, ATR, BRCA2 and ATM.

Importantly, in individuals carrying mutations in two genes, the risk of developing sarcoma was measurably higher than in those with a mutation in only one gene.And in carriers of three or more mutations, the risk was greater still.

"This is the first time - in any cancer - that anyone has quantified the effect of multiple rare genetic mutations on cancer risk," says Professor David Thomas (Head of The Kinghorn Cancer Centre and the Cancer Division of the Garvan Institute of Medical Research), who led the study.

"Until now, we've been limited to single-gene thinking, so we tell patients, for instance, that carrying a BRCA1 mutation means their breast cancer risk is higher, or that their risk of sarcoma and other cancers is higher if they've got a particular mutation in the p53 gene.

"The study shows us that the landscape of cancer risk is far more complex than that. We can now see that the risk for developing sarcoma is increased through the combined effect of multiple genes, and that the more mutations someone carries, the earlier the onset of cancer.

"These previously invisible effects are at least as large as the impact of mutations in the p53 gene itself, which is currently the strongest known genetic cause of sarcoma."

Dr Mandy Ballinger (Garvan), who co-ordinates the ISKS globally, says the study will radically change how sarcoma risk is understood.

"It's well accepted for a few cancers - like breast cancer and bowel cancer - that cancer risk is substantially determined by the genes we inherit from our parents. Our study brings sarcoma into that select group.

"About half the study participants carried at least one of these apparently cancer-promoting mutations, and almost a quarter carried more than one, which really underscores that sarcoma risk is inherited to a large extent from one's parents."

"We've never been able to identify these at-risk individuals, and their families, before. Now we can," adds Prof Thomas. "That means we can manage risk better, and help those people to get the care they need, when they need it."

Prof Thomas says the study's findings are an important step towards personalised medicine for cancer.

"Understanding the genetic drivers that give a person an increased risk of cancer also helps us understand how best to treat that person's cancer. And for about a third of the individuals we studied, the gene mutations they carry give us important information about how regularly they should be monitored and how they should or should not be treated.

"To give one example, the ERCC2 gene is involved in detoxifying chemotherapeutic agents - so for those individuals who carry an ERCC2 mutation, chemotherapy may not be an appropriate treatment.

"And for individuals carrying a BRCA2 mutation, we now know that they are at risk of sarcoma as well as breast and ovarian cancer - which also brings into play new treatment approaches."

"A lot of what we're doing going forward is looking at how we use genetic information about risk to alter the way we treat people. The more we know, the more precisely we can match individuals with the best possible treatment for them."

The researchers say that an important new direction for the research will be to investigate the entire genome for genetic mutations that increase sarcoma risk.

"We have only scratched the surface of cancer's genetic underpinnings," says Dr Ballinger.

"Ultimately, we want to identify the entire set of genetic mutations that affect the risk of developing this devastating cancer."

Whole-genome studies of sarcoma risk will be aided by the NSW Cancer Genomic Medicine Program announced last year by the NSW Government, as part of the Sydney Genomics Collaborative program.
-end-
Media enquiries:
Anna Greenhalgh
a.greenhalgh@garvan.org.au
M: +61 (0) 437 282 467

Garvan Institute of Medical Research

Related Breast Cancer Articles:

Does MRI plus mammography improve detection of new breast cancer after breast conservation therapy?
A new article published by JAMA Oncology compares outcomes for combined mammography and MRI or ultrasonography screenings for new breast cancers in women who have previously undergone breast conservation surgery and radiotherapy for breast cancer initially diagnosed at 50 or younger.
Blood test offers improved breast cancer detection tool to reduce use of breast biopsy
A Clinical Breast Cancer study demonstrates Videssa Breast can inform better next steps after abnormal mammogram results and potentially reduce biopsies up to 67 percent.
Surgery to remove unaffected breast in early breast cancer increases
The proportion of women in the United States undergoing surgery for early-stage breast cancer who have preventive mastectomy to remove the unaffected breast increased significantly in recent years, particularly among younger women, and varied substantially across states.
Breast cancer patients with dense breast tissue more likely to develop contralateral disease
Breast cancer patients with dense breast tissue have almost a two-fold increased risk of developing disease in the contralateral breast, according to new research from The University of Texas MD Anderson Cancer.
Some early breast cancer patients benefit more from breast conservation than from mastectomy
Breast conserving therapy (BCT) is better than mastectomy for patients with some types of early breast cancer, according to results from the largest study to date, presented at ECC2017.
One-third of breast cancer patients not getting appropriate breast imaging follow-up exam
An annual mammogram is recommended after treatment for breast cancer, but nearly one-third of women diagnosed with breast cancer aren't receiving this follow-up exam, according to new findings presented at the 2016 Annual Clinical Congress of the American College of Surgeons.
Low breast density worsens prognosis in breast cancer
Even though dense breast tissue is a risk factor for breast cancer, very low mammographic breast density is associated with a worse prognosis in breast cancer patients.
Is breast conserving therapy or mastectomy better for early breast cancer?
Young women with early breast cancer face a difficult choice about whether to opt for a mastectomy or breast conserving therapy (BCT).
Breast density and outcomes of supplemental breast cancer screening
In a study appearing in the April 26 issue of JAMA, Elizabeth A.
Full dose radiotherapy to whole breast may not be needed in early breast cancer
Five years after breast-conserving surgery, radiotherapy focused around the tumor bed is as good at preventing recurrence as irradiating the whole breast, with fewer side effects, researchers from the UK have found in the large IMPORT LOW trial.

Related Breast Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".