Nav: Home

Looking back into the future: Are corals able to resist a declining pH?

August 04, 2016

Because the oceans absorb man-made carbon dioxide (CO2) from the atmosphere, its pH declines. Effects of this chemical change on tropical coral reefs can be examined in laboratory or short-term field experiments. However, a team led by Dr. Marlene Wall, marine biologist at GEOMAR Helmholtz Centre for Ocean Research Kiel, chose a different approach: In the framework of the German research network BIOACID (Biological Impacts of Ocean Acidification), they examined corals of the genus Porites, which grow at volcanic carbon dioxide vents in Papua New Guinea and have become a dominant species there.

"It is very difficult to foresee if tropical corals are able to survive global climate change. These organisms are very sensitive to a rise in water temperatures, ocean acidification and pollution", explains Dr. Wall. "The natural carbon dioxide vents give us the opportunity to study the scenario of the future already today. Previous studies have shown that Porites is among the winners. But up to now, no one knew how they manage."

Porites corals keep their internal pH at a level at which they are able to produce calcium carbonate and grow despite higher carbon dioxide concentrations and lower pH in the surrounding water - a significant advantage over many other species. In this way, they have established themselves under extreme conditions. "According to our observations, the pH regulation is a key feature when it comes to surviving under a lowered pH", emphasizes Dr. Wall. The findings about pH regulation in corals are published in the journal Scientific Reports.

To better understand the ability of pH regulation, the scientific team led by Dr. Wall examined corals using the boron isotope method. For these measurements, a laser is directed at the skeletons. Material that comes off during this procedure is analysed in a mass spectrometer. The isotopic composition of boron that is included in the skeleton reveals information on the coral's internal pH. "This method gives us new insights and allows for conclusions about the physiology of the coral skeleton at the time of calcification", says Dr. Jan Fietzke, a physicist at GEOMAR and co-author of the study. "You could say we look back into the future."

For the study described in the current publication, Fietzke examined the skeleton which had been formed a few days to weeks before sampling. Comparisons with pH measurements in the surrounding water proved that the boron isotopes reflected the internal pH of the coral and that it was different from the pH of the environment - pH regulation has taken place. Based on this knowledge, cores from several decades old corals are currently being evaluated. "So we can find out when and how quickly they have acclimatized."

By looking back to the future, the researchers found out that Porites corals have a remarkable ability to level their pH for decades and thereby counteract global climate change. "But we had to learn that regulation is only possible up to a certain degree. When carbon dioxide concentrations exceed values that are expected after the year 2100, calcification and growth are lower - and even the winner reaches its limit", according to Dr. Wall. "Our results prove how important it is to combine laboratory experiments with long-term field studies and observations. Controlled laboratory experiments provide an understanding of the pH control, but only in combination with field observations, they paint a more detailed picture about possible long-term consequences."
-end-
Original publication:

Wall, Marlene, Fietzke, J., Schmidt, G. M., Fink, A. Hofmann, L. C., de Beer, D., Fabricius, K. E. 2016: Internal pH regulation Facilitates in situ long-term acclimation of massive corals to end-of-century carbon dioxide conditions. Scientific Reports 6: 30688, doi: 10.1038 / srep30688

BIOACID in brief:

Under the umbrella of BIOACID (Biological Impacts of Ocean Acidification), 10 institutions examine how marine ecosystems react to ocean acidification, how this affects the food web and the exchange of material and energy in the ocean and how the changes influence the socio-economic sector. The project is funded by the Federal Ministry of Education and Research (BMBF) and coordinated by GEOMAR Helmholtz Centre for Ocean Research Kiel. A list of member institutions and further information can be found on the website http://www.bioacid.de

Links:

http://www.geomar.de GEOMAR Helmholtz Centre for Ocean Research Kiel

http://www.bioacid.de BIOACID - Biological Impacts of Ocean Acidification

http://www.fwf.ac.at Fund for Scientific Research (FWF)

Helmholtz Centre for Ocean Research Kiel (GEOMAR)

Related Ocean Acidification Articles:

New threat from ocean acidification emerges in the Southern Ocean
Scientists investigating the effect of ocean acidification on diatoms, a key group of microscopic marine organisms, phytoplankton, say they have identified a new threat from climate change -- ocean acidification is negatively impacting the extent to which diatoms in Southern Ocean waters incorporate silica into their cell walls.
Coral skeleton crystals record ocean acidification
The acidification of the oceans is recorded in the crystals of the coral skeleton.
Ocean acidification boosts algal growth but impairs ecological relationships
Shrimp fed on marine algae grown in acidic water do not undergo a sex change that is a characteristic part of their reproductive life-cycle, report Mirko Mutalipassi and colleagues at Stazione Zoologica Anton Dohrn in Italy in a study publishing June 26 in the open-access journal PLOS ONE.
Ocean acidification 'could have consequences for millions'
Ocean acidification could have serious consequences for the millions of people globally whose lives depend on coastal protection, fisheries and aquaculture, a new publication suggests.
Southern Ocean acidification puts marine organisms at risk
New research co-authored by University of Alaska indicates that acidification of the Southern Ocean will cause a layer of water to form below the surface that corrodes the shells of some sea snails.
More Ocean Acidification News and Ocean Acidification Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...