Nav: Home

NIH funds KOMP2 at the Jackson Laboratory

August 04, 2016

The National Institutes of Health (NIH) will award a total of $28,305,235 to The Jackson Laboratory (JAX) over five years to fund phase 2 of the Knockout Mouse Production and Phenotyping Project (KOMP2).

JAX Professor and Janeway Distinguished Chair Robert Braun, Ph.D., Senior Research Scientist Stephen Murray, Ph.D., and Research Scientist Karen Svenson, Ph.D., are the principal investigators of the grant.

"Mice and humans share approximately 20,000 genes," Braun says, "but scientists have little or no data for more than half of these genes." He says that scientists around the world have been working together since 2006 to generate a targeted knockout mutation for every gene in the mouse genome. "Deleting individual genes in this way provides valuable clues to the genes' function."

JAX and two other NIH funded centers are part of a worldwide effort, the International Mouse Phenotyping Consortium (IMPC), to genetically and systematically determine the function of every mammalian gene, one gene at a time. The consortium is engaged in the immense task of producing and phenotyping (collecting physiological data from) these mice. Mouse models of genes with common functionality between mice and humans can lead to new models of human disease, which are useful for drug screening, preclinical studies and deeper understanding of biological and disease mechanisms.

Under the new grant, Braun says, JAX will take advantage of powerful new gene editing technology, known as CRISPR/Cas9, to generate, breed, cryopreserve and clinically assess the health and well-being of 1,000 lines of mice. The research team will work with the scientific community to select genes of exceptional interest, genes for which little is presently known, and genes predicted to function in select pathways.

For each of the new mouse lines, JAX will assess body weight and composition, metabolic and physiological parameters, and behavioral and cognitive function at several age points, and make both the mice and the resulting data available to the worldwide scientific community prior to publication.
-end-
The Jackson Laboratory is an independent, nonprofit biomedical research institution based in Bar Harbor, Maine, with a National Cancer Institute-designated Cancer Center, a facility in Sacramento, Calif., and a genomic medicine institute in Farmington, Conn. It employs 1,800 staff, and its mission is to discover precise genomic solutions for disease and empower the global biomedical community in the shared quest to improve human health.

Jackson Laboratory

Related Genes Articles:

Insomnia genes found
An international team of researchers has found, for the first time, seven risk genes for insomnia.
Genes affecting our communication skills relate to genes for psychiatric disorder
By screening thousands of individuals, an international team led by researchers of the Max Planck Institute for Psycholinguistics, the University of Bristol, the Broad Institute and the iPSYCH consortium has provided new insights into the relationship between genes that confer risk for autism or schizophrenia and genes that influence our ability to communicate during the course of development.
The fate of Neanderthal genes
The Neanderthals disappeared about 30,000 years ago, but little pieces of them live on in the form of DNA sequences scattered through the modern human genome.
Face shape is in the genes
Many of the characteristics that make up a person's face, such as nose size and face width, stem from specific genetic variations, reports John Shaffer of the University of Pittsburgh in Pennsylvania, and colleagues, in a study published on Aug.
Study finds hundreds of genes and genetic codes that regulate genes tied to alcoholism
Using rats carefully bred to either drink large amounts of alcohol or to spurn it, researchers at Indiana and Purdue universities have identified hundreds of genes that appear to play a role in increasing the desire to drink alcohol.
Reading between the genes
For a long time dismissed as 'junk DNA,' we now know that also the regions between the genes fulfill vital functions.
The silence of the genes
Research led by Dr. Keiji Tanimoto from the University of Tsukuba, Japan, has brought us closer to understanding the mechanisms underlying the phenomenon of genomic imprinting.
Why some genes are highly expressed
The DNA in our cells is folded into millions of small packets, like beads on a string, allowing our two-meter linear DNA genomes to fit into a nucleus of only about 0.01 mm in diameter.
Activating genes on demand
A new approach developed by Harvard geneticist George Church, Ph.D., can help uncover how tandem gene circuits dictate life processes, such as the healthy development of tissue or the triggering of a particular disease, and can also be used for directing precision stem cell differentiation for regenerative medicine and growing organ transplants.
Controlling genes with light
Researchers at Duke University have demonstrated a new way to activate genes with light, allowing precisely controlled and targeted genetic studies and applications.

Related Genes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".