Nav: Home

Echo hunter: Researchers name new fossil whale with high frequency hearing

August 04, 2016

A newly-named fossil whale species had superior high-frequency hearing ability, helped in part by the unique shape of inner ear features that have given scientists new clues about the evolution of this specialized sense.

In a study published August 4 in Current Biology, researchers from New York Institute of Technology and colleagues from the National Museum of Natural History in France describe a new species of whale, Echovenator sandersi ("Echo Hunter"), an ancient relative of the modern dolphin, and its ability to hear frequencies well above the range of hearing in humans.

The research pushes the origin of high frequency hearing in whales farther back in time -- about 10-million years than previous studies have indicated.

"Previous studies have looked at hearing in whales but our study incorporates data from an animal with a very complete skull," says Morgan Churchill, a postdoctoral fellow at NYIT College of Osteopathic Medicine and the paper's lead author. "The data we gathered enabled us to conclude that it could hear at very high frequencies, and we can also say with a great degree of certainty where it fits in the tree of life for whales."

"This was a small, toothed whale that probably used its remarkable sense of hearing to find and pursue fish with echoes only," says Associate Professor Jonathan Geisler, a study co-author. "This would allow it to hunt at night, but more importantly, it could hunt at great depths in darkness, or in very sediment-choked environments."

High frequency hearing plays a key role in echolocation, the use of sound waves and their echoes to establish the position of objects. Bats, some whales and all dolphins use echolocation to hunt.

"Echolocation requires two things to be highly effective," says Geisler. "First, the animal must have the ability to produce a high frequency sound and second, it must have the ability to hear and interpret that sound."

High-frequency sound production and hearing are key, he says, because the combination yields a rich "audio picture" of the surrounding environment. Churchill says the study confirms that most of the specializations associated with high frequency hearing evolved about 27 million years ago -- about the same time as echolocation, although a few features evolved even earlier.

The study is part of a series funded by a $220,000 National Science Foundation grant to Geisler and Associate Professor Brian Beatty, Ph.D., to conduct the first wide-ranging study of cetacean skull development in nearly a century.

To learn more about Echovenator, Churchill and colleagues studied a 27-million-year-old skull discovered in South Carolina 2001. By analyzing the bony support structures of the inner ear membranes, along with other measurements of the inner ear, the researchers concluded that the whale had ultrasonic hearing capabilities, and could hear frequencies above the range of human hearing.

About 60 million years ago, the semiaquatic ancestor of whales had a limited ability to hear high frequencies. However, Geisler says statistical analyses of fossils in the study allowed researchers to conclude that some degree of high frequency hearing evolved before echolocation and then became even more specialized in modern toothed whales. Baleen whales, which do not echolocate and are specialized to hear low frequency sound, lost some of these initial specializations for hearing high frequency sound.

"Knowing when and how echolocation evolved is a critical step in our project, and we are studying how the evolution of echolocation influenced the evolution of skull shapes in cetaceans," says Geisler.

As more biological research uses computer models, Geisler says the current study may help scientists distinguish what inner ear features are needed to hear sounds of a given frequency.
-end-


New York Institute of Technology

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".