Nav: Home

New research points to novel approach to tackling Ascaris roundworm

August 04, 2016

Scientists working out of Trinity College Dublin, Maynooth University, and Queen Mary University of London have unearthed a potential new preventative option to combat Ascaris roundworm infection. Ascaris lumbricoides is an intestinal parasite that results in severe health consequences, including growth retardation and impaired cognitive development. The infection, which affects an estimated one billion people worldwide, is particularly common in Third World countries and is estimated to be responsible for 60,000 deaths per annum.

Susceptibility to Ascaris infection differs between individuals, and heavily infected individuals have more severe symptoms and higher morbidity. Building on previous studies, which showed a difference in susceptibility to Ascaris between two different strains of mice, the researchers identified a clear distinction between the two strains and published their findings in the internationally regarded peer reviewed journal PLoS Neglected Tropical Diseases. It is thought that these new insights could lead to the development of better ways to prevent and treat Ascaris infection.

The lifecycle of the Ascaris roundworm in humans sees the infection progress from the stomach, following ingestion of viable eggs which hatch as larvae, to the liver before moving on to the lungs and then returning to the stomach. In mice, the roundworms do not progress beyond the lungs. Professor of Zoology at Trinity College, Celia Holland, has spent over a decade developing a mouse model to study Ascaris infection and has previously demonstrated that susceptible mice have more than ten-fold higher larval numbers in the lungs than resistant ones. This difference in susceptibility between the two strains, however, is first visible in the liver of infected mice.

Following infection with identical numbers of Ascaris eggs, mice from the resistant strain show an earlier inflammatory immune response coupled with more rapid tissue repair in the liver compared with susceptible mice. The researchers therefore set out to investigate the differences in the liver proteomes (via a broad analysis of liver proteins) of both uninfected control mice and infected mice, for each strain.

Professor Holland said: "By focusing on the liver we aimed to target the metaphorical front line in this particular host-parasite interaction."

The researchers identified and quantified thousands of proteins and found that hundreds of liver proteins differed substantially between the two strains, even without Ascaris infections. The resistant strain showed generally higher levels of mitochondrial proteins and proteins associated with the generation of reactive oxygen species (ROS). Ascaris infection increased the level of these proteins in both strains, supporting the evidence of their role in the response to the parasite.

Other proteins were seen only in infected mice; these included proteins involved in a part of the immune response. Two of these proteins were absent from both strains before infection, but were among the highest expressed proteins in both strains following infection. Proteins involved in translation were of lower abundance in all infected mice livers, which suggests either a broad response in the host to the presence of Ascaris or a specific targeting of the protein synthesis machinery by the parasite itself.

Lead author Gwendoline Deslyper said: "Given our findings and the central role of the liver in the Ascaris migratory pathway, we suggest a potentially novel research direction to develop alternative preventative control strategies for Ascaris. It seems that the key determinant in resistance to Ascaris in mice may lie in highly oxidative conditions that presumably restricts and arrests successful larval migration within the hepatic environment - at least of the resistant strain. By manipulating the hepatic ROS levels in the susceptible mouse strain we hope to determine the importance of the mitochondria and intrinsic ROS in conferring resistance to Ascaris."

The proteomic study, which mapped the proteins of the affected organs, was led by Dr Jim Carolan, Maynooth University Department of Biology in conjunction with Dr Joe Colgan of Queen Mary University London. Discussing the findings, Dr Carolan said: "There is still a long way to go and much research to be done, but these findings point to new options in our efforts to control a disease that affects around one eighth of our planet's population."

Trinity College Dublin

Related Immune Response Articles:

Discovering the early age immune response in foals
Researchers at the Cornell University College of Veterinary Medicine have discovered a new method to measure tiny amounts of antibodies in foals, a finding described in the May 16 issue of PLOS ONE.
Nixing the cells that nix immune response against cancer
For first time, study characterizes uptick of myeloid-derived suppressor cells in the spleens of human cancer patients, paving the way for therapies directed against these cells that collude with cancer.
Jumbled chromosomes may dampen the immune response to tumors
How well a tumor responds to immunotherapy may depend in part on whether its chromosomes are intact or in a state of disarray, a new study reports.
Tailored organoid may help unravel immune response mystery
Cornell and Weill Cornell Medicine researchers report on the use of biomaterials-based organoids in an attempt to reproduce immune-system events and gain a better understanding of B cells.
Tweaking the immune response might be a key to combat neurodegeneration
Patients with Alzheimer's or other neurodegenerative diseases progressively loose neurons yet cannot build new ones.
Estrogen signaling impacted immune response in cancer
New research from The Wistar Institute showed that estrogen signaling was responsible for immunosuppressive effects in the tumor microenvironment across cancer types.
No platelets, no immune response
When a virus attacks our organism, an inflammation appears on the affected area.
Malaria: A genetically attenuated parasite induces an immune response
With nearly 3.2 billion people currently at risk of contracting malaria, scientists from the Institut Pasteur, the CNRS and Inserm have experimentally developed a live, genetically attenuated vaccine for Plasmodium, the parasite responsible for the disease.
New finding will help target MS immune response
Researchers have made another important step in the progress towards being able to block the development of multiple sclerosis and other autoimmune diseases.
Flu infection reveals many paths to immune response
A new study of influenza infection in an animal model broadens understanding of how the immune system responds to flu virus, showing that the process is more dynamic than usually described, engaging a broader array of biological pathways.

Related Immune Response Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...