Nav: Home

UWM researchers' work in catalysis could aid drug development

August 04, 2016

Many molecules have a chemical structure that is "chiral" - they come in two forms, each with an arrangement of atoms that are mirror images of each other.

These "right-handed" and "left-handed" arrangements, called enantiomers, are problematic for industries that make pharmaceuticals and agrochemicals.

Proteins and sugars in the human body exist in only one of the two enantiomers. Yet the catalytic reactions involved in making drugs often produce molecules with both the "right-handed" and "left-handed" arrangements.

"The handedness of molecules that we ingest, such as drugs, can behave differently depending on whether they are left- or right-handed, often with catastrophic consequences," says Wilfred Tysoe, UWM distinguished professor of chemistry and biochemistry.

That means that drugs have to be synthesized to have only one "handedness." Current chiral catalysts that can accomplish this task mix tightly with the reactants, making them difficult to separate afterwards.

The goal is to develop a solid "chiral" catalyst that can easily be separated from its products.

New research from the Tysoe group at the University of Wisconsin-Milwaukee helps to bring that goal closer to reality. The researchers uncovered what happens on the surface of a solid chiral catalyst that allows the preferential formation of only one enantiomer of a molecule.

The work, funded by the U.S. Department of Energy, is detailed in a paper published today in the journal Nature Communications.

The work was carried out in collaboration with Dilano Saldin, a UWM distinguished professor of physics; post-doctoral researchers Mausumi Mahapatra, Michael Garvey and Yun Bai; and chemistry graduate student Luke Burkholder.

The researchers put a chiral molecule on the surface of a heterogeneous catalyst to investigate how the catalyst biased the surface to favor a particular handedness.

"A major problem with designing such catalysts arises from the fact that it is difficult to completely influence all of the places on the extended metal surface where the reaction takes place," said Tysoe. "So any unmodified positions on the surface will produce both right- and left-handed molecules."

Rather than using a complex commercial catalyst, the team used a simplified catalyst that retained the commercial version's key chemical properties. This allowed them to use a Scanning Tunneling Microscope to "see" which molecules adsorb and interact on the catalyst surface.

"We found that the reactant molecules undergo a structural change when it interacts with the chiral modifier which leads to the preferential formation of one enantiomer, and also makes it more reactive," Tysoe said.
-end-


University of Wisconsin - Milwaukee

Related Chemistry Articles:

Coordination chemistry and Alzheimer's disease
It has become evident recently that the interactions between copper and amyloid-β neurotoxically impact the brain of patients with Alzheimer's disease.
Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.
Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.
Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.
Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.
Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.
Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.
Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.
The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?
Top 10 chemistry start-ups
Starting a new chemistry-based company is one part discovery, one part risk.
More Chemistry News and Chemistry Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 2: Every Day is Ignaz Semmelweis Day
It began with a tweet: "EVERY DAY IS IGNAZ SEMMELWEIS DAY." Carl Zimmer – tweet author, acclaimed science writer and friend of the show – tells the story of a mysterious, deadly illness that struck 19th century Vienna, and the ill-fated hero who uncovered its cure ... and gave us our best weapon (so far) against the current global pandemic. This episode was reported and produced with help from Bethel Habte and Latif Nasser. Support Radiolab today at Radiolab.org/donate.