Nav: Home

UWM researchers' work in catalysis could aid drug development

August 04, 2016

Many molecules have a chemical structure that is "chiral" - they come in two forms, each with an arrangement of atoms that are mirror images of each other.

These "right-handed" and "left-handed" arrangements, called enantiomers, are problematic for industries that make pharmaceuticals and agrochemicals.

Proteins and sugars in the human body exist in only one of the two enantiomers. Yet the catalytic reactions involved in making drugs often produce molecules with both the "right-handed" and "left-handed" arrangements.

"The handedness of molecules that we ingest, such as drugs, can behave differently depending on whether they are left- or right-handed, often with catastrophic consequences," says Wilfred Tysoe, UWM distinguished professor of chemistry and biochemistry.

That means that drugs have to be synthesized to have only one "handedness." Current chiral catalysts that can accomplish this task mix tightly with the reactants, making them difficult to separate afterwards.

The goal is to develop a solid "chiral" catalyst that can easily be separated from its products.

New research from the Tysoe group at the University of Wisconsin-Milwaukee helps to bring that goal closer to reality. The researchers uncovered what happens on the surface of a solid chiral catalyst that allows the preferential formation of only one enantiomer of a molecule.

The work, funded by the U.S. Department of Energy, is detailed in a paper published today in the journal Nature Communications.

The work was carried out in collaboration with Dilano Saldin, a UWM distinguished professor of physics; post-doctoral researchers Mausumi Mahapatra, Michael Garvey and Yun Bai; and chemistry graduate student Luke Burkholder.

The researchers put a chiral molecule on the surface of a heterogeneous catalyst to investigate how the catalyst biased the surface to favor a particular handedness.

"A major problem with designing such catalysts arises from the fact that it is difficult to completely influence all of the places on the extended metal surface where the reaction takes place," said Tysoe. "So any unmodified positions on the surface will produce both right- and left-handed molecules."

Rather than using a complex commercial catalyst, the team used a simplified catalyst that retained the commercial version's key chemical properties. This allowed them to use a Scanning Tunneling Microscope to "see" which molecules adsorb and interact on the catalyst surface.

"We found that the reactant molecules undergo a structural change when it interacts with the chiral modifier which leads to the preferential formation of one enantiomer, and also makes it more reactive," Tysoe said.
-end-


University of Wisconsin - Milwaukee

Related Chemistry Articles:

The chemistry of olive oil (video)
Whether you have it with bread or use it to cook, olive oil is awesome.
With more light, chemistry speeds up
Light initiates many chemical reactions. Experiments at the Laser Centre of the Institute of Physical Chemistry of the Polish Academy of Sciences and the University of Warsaw's Faculty of Physics have for the first time demonstrated that increasing the intensity of illumination some reactions can be significantly faster.
The chemistry of whiskey (video)
Derby Day means it's time to recognize the chemical process of distillation, which makes bourbon possible.
Restoration based on chemistry
Considered the pinnacle of mediaeval painting, the Ghent Altarpiece was painted around 1432 by Jan van Eyck and probably his brother Hubert.
The chemistry of redheads (video)
The thing that sets redheads apart from the crowd is pigmentation.
Scientists discover helium chemistry
The scientists experimentally confirmed and theoretically explained the stability of Na2He.
What might Trump mean for chemistry? (video)
Donald Trump is now the 45th president of the US.
Chemistry on the edge
Defects and jagged surfaces at the edges of nanosized platinum and gold particles are key hot spots for chemical reactivity, researchers confirmed using a unique infrared probe at Berkeley Lab.
Light powers new chemistry for old enzymes
Princeton researchers have developed a method that irradiates biological enzymes with light to expand their highly efficient and selective capacity for catalysis to new chemistry.
Better chemistry through...chemistry
Award-winning UCSB professor Bruce Lipshutz is out to make organic chemistry better for the planet

Related Chemistry Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...