Nav: Home

Botulinum toxin study proves possibility of remote effects

August 04, 2016

MADISON, Wis. -- The botulinum toxins are among the deadliest substances on Earth, and two specific toxins -- including the popular drug Botox -- have multiple uses for treating many neuromuscular conditions, including frown lines, disabling muscle spasms and migraine headaches.

The botulinum toxins cancel nerve signals to the muscles, creating paralysis that can last for months. Given its extraordinary toxicity, doses are typically measured in trillionths of a gram, and targets are carefully chosen to silence only the desired motor nerves.

When Botox and related botulinum drugs entered the market, "the idea was that they are safe to use, they stay where they are injected, and you don't have to worry about toxin going to the central nervous system and causing weird effects," says Edwin Chapman, an investigator at the Howard Hughes Medical Institute and professor of neuroscience at the University of Wisconsin-Madison.

The concern that this powerful toxin can move beyond the injection site was reinforced in 2009, when the Food and Drug Administration added a prominent warning to prescribing information "to highlight that botulinum toxin may spread from the area of injection to produce symptoms consistent with botulism," including "unexpected loss of strength or muscle weakness. ... Understand that swallowing and breathing difficulties can be life-threatening and there have been reports of deaths related to the effects of spread of botulinum toxin."

Additionally, physicians have seen puzzling results from treatment, adds Ewa Bomba-Warczak, a doctoral candidate in neuroscience. "In many cases, after an injection for a disabling spasm of neck muscles called cervical dystonia, there is no change in muscle tone but the patient finds relief and is perfectly happy. That result can't be explained by the local effects."

In a study published today (Aug. 4, 2016) in Cell Reports, senior author Chapman, first author Bomba-Warczak and colleagues present clear evidence that toxin is moving between neurons in a lab dish.

The study looked at mouse neurons in wells connected by tiny channels that allow growth of axons -- the long fibers that neurons use to communicate. In tests of two botulinum toxins, the researchers saw toxin molecules entering the injected cell, as expected.

Once inside a neuron, botulinum toxin cleaves proteins responsible for fusion of chemical containers, known as vesicles, with the plasma membrane. This fusion event releases chemical signals that underlie communication with muscles, and the inability to fuse leads to the temporary paralysis caused by botulinum toxin.

Using antibodies to identify fragments of the damaged proteins, Chapman's group showed that toxin molecules were moving to nerve cells in wells that had not initially received the harmful molecules. "Every time one fraction of the toxin acts locally (on the first nerve cell it contacts), another fraction acts at a distance," says Chapman. "It's unknown how far they travel, which likely depends on the dose of toxin and other factors."

Co-author Jason Vevea, a UW-Madison postdoctoral fellow, produced videos showing tagged molecules of botulinum toxin moving along the axons connecting neurons.

Botulinum toxins were first described in the 1800s, and have long been a subject of research at UW-Madison. Allergan PLC, which markets four versions of botulinum toxin, reported global Botox sales of nearly $2 billion in 2015.

By finding that toxin molecules don't always stay where they are injected, Chapman says the Wisconsin study answers a long-standing question about mobility, but raises several more. "We have seen that these toxins enter neurons at the injection site, causing the desired local paralysis, but Ewa and Jason have shown unambiguously the existence of a second entry pathway that takes some of the toxin molecules to other neurons."

The research, done in a lab dish, removes variables that have plagued similar studies performed in animals, Chapman says. "We wanted to see if we could build an in vitro (in a dish) system that allows direct visualization of this putative movement, in a way that's simple, easy to interpret, and unambiguous. Do they move, or do they not?"

Chapman wonders about the effects of extraordinarily powerful toxin molecules that travel the neural networks. Local effects have, until now, been deemed the sole effects. But could part of its effects be due to the transported toxin?

These questions could be answered by genetically engineering the Clostridium bacteria that make botulinum toxin to alter the toxin's structure, Chapman says. "We may be in a position to mutate the part of the toxin that attaches to a receptor on the neuron so it can only enter the local pathway, not this new pathway we have described."

If only the local effects matter for medicine, tomorrow's versions of this ancient toxin molecule may be able to alleviate symptoms from wrinkles to severe muscle spasms without moving beyond the target neurons.

"I have a hard time imagining that any physician is going to want to inject something they know can move about when they have an option to use something that stays put," Chapman says. "It's an exciting prospect, supplanting a $2 billion drug with a safer drug."
-end-
DOWNLOAD GRAPHIC: https://uwmadison.box.com/v/botulinum

--David Tenenbaum, 608-265-8549, djtenenb@wisc.edu

University of Wisconsin-Madison

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.