Nav: Home

Researchers find how proteins control gene expression by binding both DNA and RNA

August 04, 2016

Proteins that bind DNA or RNA are usually put in different categories, but researchers at Umeå University in Sweden and Inserm in France recently showed how the p53 protein has the capacity to bind both and how this controls gene expression on the levels of both transcription (RNA synthesis) and mRNA translation (protein synthesis). The discovery was presented in the July issue of the journal Oncogene.

The p53 tumour suppressor protein is best known for its capacity to bind DNA and control gene expression at the level of transcription. Mutations that abolish the DNA binding activity are frequently found in human cancers. However, it has been known that p53 also harbours RNA binding capacity but this capacity and its cell biological role has been vastly overshadowed by its DNA-binding activity.

Together with his collaborators, Robin Fåhraeus, guest professor at the Department of Medical Biosciences at Umeå University and Research Director at Inserm in France, could show that p53 suppresses the synthesis of its negative regulator MDMX via a direct interaction between p53 and the MDMX mRNA. The researchers also show that RNA binding per se is not sufficient to suppress MDMX synthesis and that an additional trans-suppressor domain of p53 is also required. A classic p53 mutation that prevents DNA binding was shown to have differentiated activity towards MDMX synthesis.

"We found mutant p53 proteins that do not bind DNA instead have an effect towards mRNA translation," says Robin Fåhraeus, who led the study. "It has been known that mutant p53s can promote tumour growth but it is not clear what lies behind this activity and RNA binding offers one possibility."
-end-
Link to the article in Oncogene: http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016236a.html

About the article: Oncogene, article: p53 binds the mdmx mRNA and controls its translation. Authors: Tournillon AS, López I, Malbert-Colas L, Findakly S, Naski N, Olivares-Illana V, Karakostis K, Vojtesek B, Nylander K, and Fåhraeus R. DOI: 10.1038/onc.2016.236.

For more information, please contact: Robin Fåhraeus, Department of Medical Biosciences, Umeå University
Phone: + 33 (0)66 88639047
Email: robin.fahraeus@inserm.fr

Umea University

Related Dna Articles:

A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
More Dna News and Dna Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...