Simultaneous design and nanomanufacturing speeds up fabrication

August 04, 2017

Design and nanomanufacturing have collided inside of a Northwestern University laboratory.

An interdisciplinary team of researchers has used mathematics and machine learning to design an optimal material for light management in solar cells, then fabricated the nanostructured surfaces simultaneously with a new nanomanufacturing technique.

"We have bridged the gap between design and nanomanufacturing," said Wei Chen, the Wilson-Cook Professor in Engineering Design and professor of mechanical engineering in Northwestern's McCormick School of Engineering, who led the study's design component. "Instead of designing a structure element by element, we are now designing and optimizing it with a simple mathematic function and fabricating it at the same time."

The fast, highly scalable, streamlined method could replace cumbersome trial-and-error nanomanufacturing and design methods, which often take vast resources to complete.

"The concurrent design and processing of nanostructures paves the way to avoid trial-and-error manufacturing, increasing the cost effectiveness to prototype nanophotonic devices," said Teri Odom, Charles E. and Emma H. Morrison Professor of Chemistry in Northwestern's Weinberg College of Arts and Sciences and leader of the study's nanofabrication component.

Researchers are currently interested in nanophotonic materials for light absorption in ultra-thin, flexible solar cells. The same principle could also be applied to implement color into clothing without dyes and to create anti-wet surfaces. For solar cells, the ideal nanostructure surface features quasi-random structures -- meaning the structures appear random but do have a pattern. Designing these patterns can be difficult and time consuming, since there are thousands of geometric variables that must be optimized simultaneously to discover the optimal surface pattern to absorb the most light.

"It is a very tedious job to fabricate the optimal design," Chen said. "You could use nano-lithography, which is similar to 3D printing, but it takes days and thousands of dollars just to print a little square. That's not practical."

To bypass the issues of nano-lithography, Odom and Chen manufactured the quasi-random structures with wrinkle lithography, a new nanomanufacturing technique that can rapidly transfer wrinkle patterns into different materials to realize a nearly unlimited number of quasi-random nanostructures. Formed by applying strain to a substrate, wrinkling is a simple method for the scalable fabrication of nanoscale surface structures.

"Importantly, the complex geometries can be described computationally with only three parameters -- instead of thousands typically required by other approaches," Odom said. "We then used the digital designs in an iterative search loop to determine the optimal nanowrinkles for a desired outcome."

Supported by the National Science Foundation and Office of Naval Research, the research was published online this week in the Proceedings of the National Academy of Sciences. Won-Kyu Lee, a PhD student in Odom's laboratory, served as the paper's first author. Shuangcheng Yu, a PhD student who recently graduated from Chen's Integrated Design Automation Laboratory (IDEAL), served as the paper's second author. Lee and Yu contributed equally to the work.

The team demonstrated the concurrent design and manufacturing method to fabricate 3D photonic nanostructures on a silicon wafer for potential use as a solar cell. The resulting material absorbed 160 percent more light in the 800 to 1,200 nanometer wavelength -- a range in which current solar cells are less efficient -- than other designs.

"Light wavelengths have different frequencies, and we did not design for just one frequency," Chen said. "We designed for the whole spectrum of sunlight frequencies, so the solar cell can absorb light over broadband wavelengths and over a wide collection of angles."

Next, the team plans to apply its method to other materials, such as polymers, metals, and oxides, for other photonics applications.
-end-


Northwestern University

Related Solar Cells Articles from Brightsurf:

Solar cells of the future
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability.

A blast of gas for better solar cells
Treating silicon with carbon dioxide gas in plasma processing brings simplicity and control to a key step for making solar cells.

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.

Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.

For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.

Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.

Read More: Solar Cells News and Solar Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.