Methanol synthesis: Insights into the structure of an enigmatic catalyst

August 04, 2020

Methanol is one of the most important basic chemicals used, for example, to produce plastics or building materials. To render the production process even more efficient, it would be helpful to know more about the copper/zinc oxide/aluminium oxide catalyst deployed in methanol production. To date, however, it hasn't been possible to analyse the structure of its surface under reaction conditions. A team from Ruhr-Universität Bochum (RUB) and the Max Planck Institute for Chemical Energy Conversion (MPI CEC) has now succeeded in gaining insights into the structure of its active site. The researchers describe their findings in the journal Nature Communications from 4 August 2020.

In a first, the team showed that the zinc component of the active site is positively charged and that the catalyst has as many as two copper-based active sites. "The state of the zinc component at the active site has been the subject of controversial discussion since the catalyst was introduced in the 1960s. Based on our findings, we can now derive numerous ideas on how to optimise the catalyst in the future," outlines Professor Martin Muhler, Head of the Department of Industrial Chemistry at RUB and Max Planck Fellow at MPI CEC. For the project, he collaborated with Bochum-based researcher Dr. Daniel Laudenschleger and Mülheim-based researcher Dr. Holger Ruland.

Sustainable methanol production

The study was embedded in the Carbon-2-Chem project, the aim of which is to reduce CO2 emissions by utilising metallurgical gases produced during steel production for the manufacture of chemicals. In combination with electrolytically produced hydrogen, metallurgical gases could also serve as a starting material for sustainable methanol synthesis. As part of the Carbon-2-Chem project, the research team recently examined how impurities in metallurgical gases, such as are produced in coking plants or blast furnaces, affect the catalyst. This research ultimately paved the way for insights into the structure of the active site.

Active site deactivated for analysis

The researchers had identified nitrogen-containing molecules- ammonia and amines - as impurities that act as catalyst poisons. They deactivated the catalyst, but not permanently: if the impurities disappear, the catalyst recovers by itself. Using a unique research apparatus that was developed in-house, i.e. a continuously operated flow apparatus with an integrated high-pressure pulse unit, the researchers passed ammonia and amines over the catalyst surface, temporarily deactivating the active site with a zinc component. Despite the zinc component being deactivated, another reaction still took place on the catalyst: namely the conversion of ethene to ethane. The researchers thus detected a second active site operating in parallel, which contains metallic copper but doesn't have a zinc component.

Since ammonia and the amines are bound to positively charged metal ions on the surface, it was evident that zinc, as part of the active site, carries a positive charge.
-end-


Ruhr-University Bochum

Related Zinc Articles from Brightsurf:

Scientists evaluated the perspectives of zinc intake for COVID-19 prevention
Researchers from Sechenov University in collaboration with colleagues from Germany, Greece and Russia reviewed scientific articles on the role of zinc in the prevention and treatment of viral infections and pneumonia, with projections on those caused by SARS-CoV-2.

Putting zinc on bread wheat leaves
Applying zinc to the leaves of bread wheat can increase wheat grain zinc concentrations and improve its nutritional content.

A nanoscale laser made of gold and zinc oxide
Tiny particles composed of metals and semiconductors could serve as light sources in components of future optical computers, as they are able to precisely localize and extremely amplify incident laser light.

Zinc lozenges did not shorten the duration of colds
Administration of zinc acetate lozenges to common cold patients did not shorten colds in a randomized trial published in BMJ Open.

Dietary zinc protects against Streptococcus pneumoniae infection
Researchers have uncovered a crucial link between dietary zinc intake and protection against Streptococcus pneumoniae, the primary bacterial cause of pneumonia.

Zinc could help as non-antibiotic treatment for UTIs
New details about the role of zinc in our immune system could help the development of new non-antibiotic treatment strategies for bacterial diseases, such as urinary tract infections (UTIs).

Zinc deficiency may play a role in high blood pressure
Lower-than-normal zinc levels may contribute to high blood pressure (hypertension) by altering the way the kidneys handle sodium.

Genetic polymorphisms and zinc status
Zinc is an essential component for all living organisms, representing the second most abundant trace element, after iron.

Autism is associated with zinc deficiency in early development -- now a study links the two
Autism has been associated with zinc deficiency in infancy. While it is not yet known whether zinc deficiency in early development causes autism, scientists have now found a mechanistic link.

Can chocolate, tea, coffee and zinc help make you more healthy?
Ageing and a low life expectancy are caused, at least partly, by oxidative stress.

Read More: Zinc News and Zinc Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.