Nav: Home

Between shark and ray: The evolutionary advantage of the sea angels

August 04, 2020

The general picture of a shark is that of a fast and large ocean predator. Some species, however, question this image - for example angel sharks. They have adapted to a life on the bottom of the oceans, where they lie in wait for their prey. In order to be able to hide on or in the sediment, the body of angel sharks became flattened in the course of their evolution, making them very similar to rays, which are closely related to sharks.

Flattened body as indication for a successful lifestyle

The oldest known complete fossils of angel sharks are about 160 million years old and demonstrate that the flattened body was established early in their evolution. This also indicates that these extinct angel sharks already had a similar lifestyle as their extant relatives - and that this lifestyle obviously was very successful.

Angel sharks are found all over the world today, ranging from temperate to tropical seas, but most of these species are threatened. In order to understand the patterns and processes that led to their present low diversity and the possible consequences of their particular anatomy, the team has studied the body shapes of angel sharks since their origins using modern methods.

Today's species are very similar

For this purpose, the skulls of extinct species from the late Jurassic period (about 160 million years ago) and of present-day species were quantitatively analysed using X-ray and CT images and prepared skulls employing geometric-morphometric approaches. In doing so, the evolution of body shapes could be explained comparatively, independent of body size.

The results show that early angel sharks were different in their external shape, whereas modern species show a comparably lower variation in shape. "Many of the living species are difficult to identify on the basis of their skeletal anatomy and shape, which could be problematic for species recognition," explains Faviel A. López-Romero.

Angel sharks are well adapted, but react slowly to environmental changes

It has been shown that in living species the individual parts of the skull skeleton are more closely integrated than in their extinct relatives. This led to a reduced variability in appearance during the evolution of angel sharks. "The effect of integrating different parts of the skull into individual, highly interdependent modules can lead to a limited ability to evolve in different forms, but at the same time increases the ability to successfully adapt to specific environmental conditions," explains Jürgen Kriwet.

In the case of the angel sharks, increasing geographical isolation resulted in the development of different species with very similar adaptations. "But modular integration also means that such animals are no longer able to react quickly to environmental changes, which increases their risk of extinction," concludes Jürgen Kriwet.
-end-
Publication in Scientific Reports:

Evolutionary trends of the conserved neurocranium shape in angel sharks (Squatiniformes, Elasmobranchii). López-Romero, F. A., Stumpf, S., Pfaff, C., Marramà, G., Johanson, Z. & Kriwet, J. in: Scientific Reports.

DOI: 10.1038/s41598-020-69525-7

University of Vienna

Related Evolution Articles:

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.
Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.
How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.
Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.