UCI researchers publish new guide for viral tracers in neural circuit mapping

August 04, 2020

Irvine, CA - August 4, 2020 - Researchers from the newly-established Center for Neural Circuit Mapping at the University of California, Irvine School of Medicine evaluate the properties of anterograde and retrograde viral tracers, comparing their strengths and limitations for use in neural circuit mapping. Results were published today as a primer in Neuron.

The article provides a comprehensive comparison of anterograde and retrograde viral and non-viral tracers for neural circuit analysis and describe neural circuit tracing history and background. It also examines the specific viruses used for neuroscience research, and provides essential information to guide other researchers on their choice of viral tracers.

Viral tracers are important tools for neuroanatomical mapping and genetic payload delivery. Genetically modified viruses allow for cell-type specific targeting, and overcome many limitations of non-viral tracers.

"A central goal of modern neuroscience research is to understand the cell-type specific connections between different regions of the brain and the detailed circuit organization within them," said lead author Xiangmin Xu, PhD, professor of anatomy and neurobiology, and director of the new Center for Neural Circuit Mapping. "Our primer evaluates currently applied anterograde and retrograde viral tracers and provides practical guidance on experimental uses, along with key technical and conceptual considerations for developing new safer and more effective anterograde trans-synaptic viral vectors for neural circuit analysis in multiple species."

Naturally occurring viruses have been used for neural circuit tracing for decades by exploiting the natural properties of viral propagation and transmission. Genetic modifications of such viruses have led to many improvements for neuroscience applications. In addition to anatomical mapping, genetically modified viral tracers have greatly facilitated functional studies of cell-type specific and circuit-specific neural networks in the brain.

Xu, along with other UCI School of Medicine investigators involved in the primer, including Rozanne Sandri-Goldin, PhD, chancellor's professor and chair of microbiology and molecular genetics, Todd Holmes, PhD, professor and vice chair of physiology and biophysics, and Bert Semler, PhD, distinguished professor of microbiology and molecular genetics and director for the UCI Center for Virus Research, recently launched the Center for Neural Circuit Mapping (CNCM) at the UCI School of Medicine. The CNCM focuses on neural circuit studies and new viral-genetic technology development. A critical component of the new center is the creation of a viral production facility to disseminate new molecular tools to the worldwide neuroscience community.

"Using new genetic-viral tools, our main goal with the CNCM is to advance the study of neural circuits using animal models to define mechanisms and pathways that underlie neurodevelopmental, neuropsychiatric and neurodegenerative disorders," said Xu. "Understanding the brain's neural circuitry is critical for successful translational progress in better treating these diseases."
The primer article and the new Center for Neural Circuit Mapping are supported in part by the National Institutes of Health's BRAIN Initiative, the Brain & Behavior Research Foundation and the UCI School of Medicine.

About the UCI School of Medicine

Each year, the UCI School of Medicine educates more than 400 medical students, and nearly 150 doctoral and master's students. More than 700 residents and fellows are trained at UCI Medical Center and affiliated institutions. The School of Medicine offers an MD; a dual MD/PhD medical scientist training program; and PhDs and master's degrees in anatomy and neurobiology, biomedical sciences, genetic counseling, epidemiology, environmental health sciences, pathology, pharmacology, physiology and biophysics, and translational sciences. Medical students also may pursue an MD/MBA, an MD/master's in public health, or an MD/master's degree through one of three mission-based programs: the Health Education to Advance Leaders in Integrative Medicine (HEAL-IM), the Leadership Education to Advance Diversity-African, Black and Caribbean (LEAD-ABC), and the Program in Medical Education for the Latino Community (PRIME-LC). The UCI School of Medicine is accredited by the Liaison Committee on Medical Accreditation and ranks among the top 50 nationwide for research. For more information, visit http://www.som.uci.edu/.

University of California - Irvine

Related Viruses Articles from Brightsurf:

Sorting out viruses with machine learning
Researchers at Osaka University created a machine-learning system to identify single viral particles that cause respiratory diseases, including coronavirus, using silicon nanopores.

The rafts used by viruses
The study may suggest new strategies to limit virus attacks and prevent or combat diseases like Sars and Covid-19 based on biomedical and engineering principles.

Animals keep viruses in the sea in balance
A variety of sea animals can take up virus particles while filtering seawater for oxygen and food.

Hundreds of novel viruses discovered in insects
New viruses which cause diseases often come from animals. Well-known examples of this are the Zika virus transmitted by mosquitoes, bird flu viruses, as well as the MERS virus which is associated with camels.

First video of viruses assembling
For the first time, researchers have captured images of the formation of individual viruses, offering a real-time view into the kinetics of viral assembly.

Plant viruses may be reshaping our world
A new review article appearing in the journal Nature Reviews Microbiology highlights the evolution and ecology of plant viruses.

Checkmate for hepatitis B viruses in the liver
Researchers at Helmholtz Zentrum M√ľnchen and the Technical University of Munich, working in collaboration with researchers at the University Medical Center Hamburg-Eppendorf and the University Hospital Heidelberg, have for the first time succeeded in conquering a chronic infection with the hepatitis B virus in a mouse model.

How viruses outsmart their host cells
Viruses depend on host cells for replication, but how does a virus induce its host to transcribe its own genetic information alongside that of the virus, thus producing daughter viruses?

Mobile, instant diagnosis of viruses
In a first for plant virology, a team from CIRAD recently used nanopore technology to sequence the entire genomes of two yam RNA viruses.

How ancient viruses got cannabis high
THC and CBD, bioactive substances produced by cannabis and sought by medical patients and recreational users, sprung to life thanks to ancient colonization of the plant's genome by viruses, U of T researchers have found.

Read More: Viruses News and Viruses Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.