Superior TNOx/HRGO hybrid anode for lithium-ion batteries

August 04, 2020

In a paper published in NANO, a team of researchers from Chengdu Development Center of Science and Technology have significantly enhanced the performance of titanium niobium oxides for lithium-ion batteries. This has applications in electric vehicles and mobile electronics.

Due to its high security and capacity, titanium niobium oxide (TNO) has gained much attention as anode material for lithium-ion batteries. Yet, its electronic conductivity is too low to have high capability at high rates. In order to improve the high-rate performance of TNO effectively, a team of researchers from Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, has combined utilized crystal structure modification, particle size reduction, porous structure, and conductive-phase compositing to solve this problem. The electrochemical performance, especially high-rate performance, of the material was significantly enhanced.

Ti2Nb10O29-x/HRGO hybrid was successfully fabricated by introducing vacancies into Ti2Nb10O29 (TNO) and hybridizing TNO with holey reduced graphene oxide. The structure of TNOx/HRGO is TNOx microspheres with oxygen vacancies wrapped by gossamer-like HRGO. Electrochemical measurements confirmed that TNOx/HRGO hybrid exhibited excellent reversible capacity of 316 mAh/g, 278 mAh/g, 242 mAh/g, 225 mAh/g, and 173 mAh/g at 1 C, 5 C, 10 C, 20 C, and 40 C, respectively. After 300 cycles at 10 C, it still has a high capacity of 238 mAh/g with a high capacity retention of 98%, revealing excellent cycling stability.

The oxygen vacancies of TNOx and the high conductivity of HRGO can effectively enhance the electronic conductivity of the TNOx/HRGO hybrid, and the HRGO holes are beneficial for the transmission of lithium-ion (Li+). The synergy effect of above features improves the rate performance of the TNOx/HRGO hybrid. In addition, the existence of HRGO can buffer volume expansion during the insertion processes of Li+, which can improve cyclic stability of the TNOx/HRGO hybrid.

In this paper, combined utilization of several methods is proved to be an effective way to improve the electrochemical performance of TNO. Ti2Nb10O29-x/HRGO hybrid can be a potential anode material for lithium-ion storage with high security and high capacity, as well as excellent high-rate and cycle performance.
-end-
This research was supported in part by grants from the National Natural Science Foundation of China (No. 51873240 and 51103141) and Sichuan Science and Technology Program (2019YJ0658).

Corresponding authors for this study are Wenwen Zeng (zww123100@126.com) and Haoran Zhan (zhanhenry20@gmail.com). Additional co-authors of the NANO paper are Nan Luo, Guoliang Chen, Yunfan Shang, Suyang Lu, Jun Mei, Changyu Tang, Zhoukun He.

For more insight into the research described, readers are invited to access the paper on NANO.

IMAGE

Caption: The morphology image and rate capability of TNOx/HRGO, it can be seen that its structure is TNOx microspheres wrapped by gossamer-like HRGO, and its capacity is as high as 225 mAh/g and 173 mAh/g at 20 C and 40 C, respectively.

NANO is an international peer-reviewed monthly journal for nanoscience and nanotechnology that presents forefront fundamental research and new emerging topics. It features timely scientific reports of new results and technical breakthroughs and publishes interesting review articles about recent hot issues.

About World Scientific Publishing Co.

World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research, professional and educational communities. The company publishes about 600 books annually and about 140 journals in various fields. World Scientific collaborates with prestigious organizations like the Nobel Foundation and US National Academies Press to bring high quality academic and professional content to researchers and academics worldwide. To find out more about World Scientific, please visit http://www.worldscientific.com.

For more information, contact Tay Yu Shan at ystay@wspc.com.

World Scientific

Related Electric Vehicles Articles from Brightsurf:

Drop in pandemic CO2 emissions previews world of electric vehicles
When the SF Bay Area mandated shelter-in-place March 16, it created a natural experiment for UC Berkeley's Ron Cohen, who had established an inexpensive pollution sensor network in local neighborhoods.

Plugging in: Survey examines American perceptions of -- and resistance to -- electric vehicles
The latest installment of the Climate Insights 2020 report series finds that resistance to purchasing electric vehicles derives from a variety of sources -- and those reasons differ among some demographics.

New study shows converting to electric vehicles alone won't meet climate targets
Today there are more than 7 million electric vehicles (EVs) in operation around the world, compared with only about 20,000 a decade ago.

New composite material revs up pursuit of advanced electric vehicles
Scientists at Oak Ridge National Laboratory used new techniques to create a composite that increases the electrical current capacity of copper wires, providing a new material that can be scaled for use in ultra-efficient, power-dense electric vehicle traction motors.

Unmanned aerial vehicles help wheat breeders
Usually, breeders pick the best wheat lines by hand, but unmanned aerial vehicles that record certain measures of plant health can help breeders select wheat lines more efficiently.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Will automated vehicles cut parking revenue?
Benjamin Clark and Anne Brown of the University of Oregon used Seattle as a case study to find the association between TNC trips and on-street parking occupancy.

Influx of electric vehicles accelerates need for grid planning
A new PNNL report says the western US bulk power system can reliably support projected growth of up to 24 million electric vehicles through 2028, but challenges will arise as EV adoption grows beyond that threshold.

Battery breakthrough gives boost to electric flight and long-range electric cars
Researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), in collaboration with Carnegie Mellon University, have developed a new battery material that could enable long-range electric vehicles that can drive for hundreds of miles on a single charge, and electric planes called eVTOLs for fast, environmentally friendly commutes.

Research determines financial benefit from driving electric vehicles
Motorists can save as much as $14,500 on fuel costs over 15 years by driving an electric vehicle instead of a similar one fueled by gasoline, according to a new analysis conducted by researchers at the U.S.

Read More: Electric Vehicles News and Electric Vehicles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.