Nav: Home

How to predict a typhoon

August 04, 2020

Tropical cyclones, also known as typhoons, wreak havoc in Asia and the Pacific. The storms can be deadly -- in 2013, Typhoon Haiyan, the strongest ever recorded, was responsible for 6,340 deaths -- and cost billions in damages. Current forecast models can only predict these storms 10 days in advance, at most, and they cannot precisely predict how intense the storms will become.

To rectify this, an international team of researchers has developed a model that analyzes nearly a quarter of Earth's surface and atmosphere in order to better predict the conditions that birth typhoons, as well as the conditions that lead to more severe storms. They published their results on July 27 in Advances in Atmospheric Sciences.

"The target problem of this study is how to foretell the genesis of typhoons," said paper author Mingkui Li, associate professor in the Key Laboratory of Physical Oceanography in the Ocean University of China and the Pilot National Laboratory for Marine Science and Technology (QNLM). "We specifically address three aspects: the onset time, central pressure and maximum wind speed."

With those three variabilities in mind, the researchers coupled prediction models of the atmosphere and the Earth's surface covering Asia and the Pacific Ocean. They examined three coupled models, each accounting for a different area depth. The researchers also accounted for the influence of one variable on another, such as wind speed on sea surface temperature, a phenomenon known as coupled data assimilation. This influence is well understood and accounted for in climate predictions and in weather forecasts, but it has not been fully applied in understanding how long-term climate affects day-to-day weather and vice versa, according to Li.

"A fine-resolution ocean-atmosphere coupled model that is initialized by downscaled coupled data assimilation is a key for forecasting the typhoon genesis," said Shaoqing Zhang, paper author and professor in the Key Laboratory of Physical Oceanography, QNLM and the International Laboratory for High-Resolution Earth System Model and Prediction (iHESP). "We aimed to provide insights on the time scale that can be used to forecast typhoons in advance, as well as how the resolution of coupled models can affect the prediction of formation, intensity, and track."

From their study, the researchers determined that a high-resolution coupled model with the ability to better understand the relationship between warm sea surface temperatures and weak wind shears -- conditions that favor tropical cyclone formation -- could improve typhoon predictability.

"Although completely addressing these problems, which are important in understanding issues of regional climate and extended-range forecasts, requires plenty of further study, our paper attempts to open the door for it," Zhang said, noting that the team will further improve the physics of the coupled models. "Our goal is to develop a 10 to 30-day extended range prediction system that will ultimately lead to seamless weather-climate predictions."
This work was supported by the National Key Research & Development Program of China, the National Natural Science Foundation of China and Shandong Province's "Taishan" Scientist Project. This research is also part of a collaborative project between the Ocean University of China, Texas A&M University and the National Center for Atmospheric Research.

Other contributors include Lixin Wu, Xiaopei Lin, Xiaolin Yu, Xiaohui Ma, Weiwei Ma, Haoran Zhao, Kai Mao and Xue Wang, all of whom are affiliated with the Key Laboratory of Physical Oceanography in the Ocean University of China. Qu, Lin, Yu, and X. Ma are also affiliated with QNLM, along with Huiqin Hu, Dongning Jia and Yuhu Chen. Ping Chang and Gohkan Danabasoglu, both with iHESP, also contributed. Chang is also with the Department of Oceanography at Texas A&M University, and Danabasoglu is also with the National Center for Atmospheric Research in Colorado. Other contributors include Xin Liu and Guangliang Liu, both with the National Supercomputing Jinan Center; and Youwei Ma, with the College of Oceanic and Atmospheric Sciences, Ocean University of China.

Institute of Atmospheric Physics, Chinese Academy of Sciences

Related Atmosphere Articles:

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.
Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.
What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.
Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.
Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.
Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.
The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.
An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.
Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.
Astronomers find exoplanet atmosphere free of clouds
Scientists have detected an exoplanet atmosphere that is free of clouds, marking a pivotal breakthrough in the quest for greater understanding of the planets beyond our solar system.
More Atmosphere News and Atmosphere Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.