The matrix, seismically loaded

August 05, 2003

On Wednesday, July 30, as scientists all over the country looked intently on, a synthetic earthquake shook a half-real building.

Part of the structure was conventional steel: full-sized structural support columns sitting in laboratories at the University of Colorado and the University of Illinois at Urbana-Champaign (UIUC).

But a third support column and the building floor that rested on them, forming a typical 1-story, 2-bay component of a modern steel frame building, existed nowhere but in software on chips. They were simulations, created by grid-linked machines at the National Supercomputing Center in Illinois and elsewhere.

Physical stresses on the real columns, hundreds of miles apart, produced a set of digital signals that interacted with the virtual structure.

The result was a realistic experiment of the effects of an earthquake, creating a profusion of real time data -- video images, records of stress and movements, and much more that was distributed by high-bandwidth connections to dozens of researchers in locations from NSF headquarters in Washington D.C. to California.

"This experiment represents a genuinely new way of conducting earthquake engineering experiments," said Carl Kesselman, director of the Center for Grid Technologies at the University of Southern California, who was a leader of the team that created the event.

The exercise was the first full-scale multi-site use of NEESgrid, a resource creeated to used grid-linked computing resources to provide engineers with new ways to study how earthquakes affect structures.

NEESgrid is consortium of institutions led by the National Center for Supercomputing Applications at UIUC that includes USC, the Argonne National Laboratory and the University of Michigan. It is part of the George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) project.

The USC School of Engineering has a double involvement in the consortium. Besides the work of Dr. Kesselman's center at the Schools' Information Sciences Institute, Dr. Erik Johnson and the USC department of civil and environmental engineering are playing an important role.

In addition to the NCSA, the University of Illinois Mid-America Earthquake Center and department of civil engineering are also participants.

Kesselman's longtime partners in the development grid technology at Argonne National Laboratory, the team led by Dr. Ian Foster, are also part of the consortium, as well as Argonne's material science division, along with the Collaboratory for Research on Electronic Work at the University of Michigan.

The recent prototype experiment, called the "Multi-Site Online Simulation Test," (MOST) was designed by Dr. Bill Spencer of Illinois and Dr. Benson Shing at Colorado. Illinois grad student Narutoshi Nakata wrote the simulation code.

Kesselman and Foster's groups created the "middleware" that allowed the experiment to proceed across continental distances, through Java interfaces.

USC's Johnson, a structural engineer with substantial background in Information Technology, helped bridge the gap between Java and the Matlab computer language used by engineers.

The software and the experiment functioned as designed. "On a scale of 10, I would say it was a 9.5," said Johnson, explaining it had gone almost completely as planned, with the only glitch being a network outage that had cut the 5- hour experiment about ten minutes short.

Another experiment is planned early next year, according to Johnson.

"The goal is to create a collaborative research network by linking researchers and engineering testing facilities across the United States, and providing them with the latest computational tools," said Priscilla Nelson, NSF division director for civil and mechanical systems when NEESGrid was created in August, 2001.

"We expect this network to speed the simulations, experiments, and data analysis that lead to better seismic design and hazard mitigation."
-end-
Development of NEES will continue through Sept. 30. 2004. A community-based NEES Consortium will operate the NEES collaboratory beginning in October 2004.

University of Southern California

Related Earthquake Articles from Brightsurf:

Healthcare's earthquake: Lessons from COVID-19
Leaders and clinician researchers from Beth Israel Lahey Health propose using complexity science to identify strategies that healthcare organizations can use to respond better to the ongoing pandemic and to anticipate future challenges to healthcare delivery.

Earthquake lightning: Mysterious luminescence phenomena
Photoemission induced by rock fracturing can occur as a result of landslides associated with earthquakes.

How earthquake swarms arise
A new fault simulator maps out how interactions between pressure, friction and fluids rising through a fault zone can lead to slow-motion quakes and seismic swarms.

Typhoon changed earthquake patterns
Intensive erosion can temporarily change the earthquake activity (seismicity) of a region significantly.

Cause of abnormal groundwater rise after large earthquake
Abnormal rises in groundwater levels after large earthquakes has been observed all over the world, but the cause has remained unknown due to a lack of comparative data before & after earthquakes.

New clues to deep earthquake mystery
A new understanding of our planet's deepest earthquakes could help unravel one of the most mysterious geophysical processes on Earth.

Fracking and earthquake risk
Earthquakes caused by hydraulic fracturing can damage property and endanger lives.

Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.

Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.

Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.

Read More: Earthquake News and Earthquake Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.